IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v90y2016icp513-519.html
   My bibliography  Save this article

Comparison of Photovoltaic plant power production prediction methods using a large measured dataset

Author

Listed:
  • Graditi, G.
  • Ferlito, S.
  • Adinolfi, G.

Abstract

Nowadays the estimation of power production yield by stand-alone and grid-connected Photovoltaic (PV) plants is crucial for technical and economic feasibility design analyses. The main goal is to overcome renewables unpredictability by properly estimating the power production and by suitably balancing generation and consumption. In this context, many methods can be applied to forecast renewables energy production. The scope of this paper is a comparative analysis of three different methods to estimate the power production of a preexisting PV plant. It is installed at ENEA Research Centre located in Portici (South Italy) and it is integrated in a Micro Grid (MG) configuration. In detail a phenomenological model proposed by Sandia National Laboratories and two statistical learning models, a Multi-Layer Perceptron (MLP) Neural Network and a Regression approach, are compared. These models are deeply different also in terms of required input data and parameters. In detail, phenomenological model application requires the availability of design parameters and technical devices specifications. Statistical machine learning models need, however, input variable previously acquired datasets. The a-Si/μc-Si PV plant, installed at Portici, represents an adequate case study for the three models comparison, as both design and acquired data are available. In fact, the plant was designed at the ENEA Research Centre so this makes possible the knowledge of the design parameters and, being a part of the MG, its data are continuously acquired and transmitted to other network devices. Obtained results demonstrate more accurate power predictions can be reached by statistical machine learning approaches. The main novelty of the paper consists in the optimization of the considered models by the appropriate identification of the minimum and more representative training dataset. Authors underline the unnecessary use of thousands samples by suitably selecting the dataset size and samples by means of a Genetic Algorithm. The optimization strategy effectiveness is verified comparing the prediction performances obtained employing the optimal dataset with those obtained with a randomly chosen dataset. In this scenario, Genetic Algorithm strategy represents a successful approach to the suitable identification of statistical models datasets.

Suggested Citation

  • Graditi, G. & Ferlito, S. & Adinolfi, G., 2016. "Comparison of Photovoltaic plant power production prediction methods using a large measured dataset," Renewable Energy, Elsevier, vol. 90(C), pages 513-519.
  • Handle: RePEc:eee:renene:v:90:y:2016:i:c:p:513-519
    DOI: 10.1016/j.renene.2016.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116300271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    2. Roumpakias, Elias & Stamatelos, Anastassios, 2019. "Performance analysis of a grid-connected photovoltaic park after 6 years of operation," Renewable Energy, Elsevier, vol. 141(C), pages 368-378.
    3. Dias, César Luiz de Azevedo & Castelo Branco, David Alves & Arouca, Maurício Cardoso & Loureiro Legey, Luiz Fernando, 2017. "Performance estimation of photovoltaic technologies in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 367-375.
    4. Honglu Zhu & Weiwei Lian & Lingxing Lu & Songyuan Dai & Yang Hu, 2017. "An Improved Forecasting Method for Photovoltaic Power Based on Adaptive BP Neural Network with a Scrolling Time Window," Energies, MDPI, vol. 10(10), pages 1-18, October.
    5. Emanuele Ogliari & Alessandro Niccolai & Sonia Leva & Riccardo E. Zich, 2018. "Computational Intelligence Techniques Applied to the Day Ahead PV Output Power Forecast: PHANN, SNO and Mixed," Energies, MDPI, vol. 11(6), pages 1-16, June.
    6. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    7. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    9. Li, Chengdong & Zhou, Changgeng & Peng, Wei & Lv, Yisheng & Luo, Xin, 2020. "Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method," Energy, Elsevier, vol. 212(C).
    10. Jabar H. Yousif & Hussein A. Kazem & John Boland, 2017. "Predictive Models for Photovoltaic Electricity Production in Hot Weather Conditions," Energies, MDPI, vol. 10(7), pages 1-19, July.
    11. Mahtab Kaffash & Glenn Ceusters & Geert Deconinck, 2021. "Interval Optimization to Schedule a Multi-Energy System with Data-Driven PV Uncertainty Representation," Energies, MDPI, vol. 14(10), pages 1-20, May.
    12. Laura Casula & Guglielmo D’Amico & Giovanni Masala & Filippo Petroni, 2020. "Performance estimation of photovoltaic energy production," Letters in Spatial and Resource Sciences, Springer, vol. 13(3), pages 267-285, December.
    13. Hyung Keun Ahn & Neungsoo Park, 2021. "Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors," Energies, MDPI, vol. 14(2), pages 1-17, January.
    14. He, Yaoyao & Qin, Yang & Wang, Shuo & Wang, Xu & Wang, Chao, 2019. "Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Network," Applied Energy, Elsevier, vol. 233, pages 565-575.
    15. Dong, Changgui & Sigrin, Benjamin, 2019. "Using willingness to pay to forecast the adoption of solar photovoltaics: A “parameterization + calibration” approach," Energy Policy, Elsevier, vol. 129(C), pages 100-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:90:y:2016:i:c:p:513-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.