IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p27-d466886.html
   My bibliography  Save this article

Cyber-Security of Smart Microgrids: A Survey

Author

Listed:
  • Farzam Nejabatkhah

    (CYME International T&D, Eaton, Saint-Bruno, QC J3V 3P8, Canada)

  • Yun Wei Li

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

  • Hao Liang

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

  • Rouzbeh Reza Ahrabi

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

Abstract

In this paper, the cyber-security of smart microgrids is thoroughly discussed. In smart grids, the cyber system and physical process are tightly coupled. Due to the cyber system’s vulnerabilities, any cyber incidents can have economic and physical impacts on their operations. In power electronics-intensive smart microgrids, cyber-attacks can have much more harmful and devastating effects on their operation and stability due to low inertia, especially in islanded operation. In this paper, the cyber–physical systems in smart microgrids are briefly studied. Then, the cyber-attacks on data availability, integrity, and confidentiality are discussed. Since a false data injection (FDI) attack that compromises the data integrity in the cyber/communication network is one of the most challenging threats for smart microgrids, it is investigated in detail in this paper. Such FDI attacks can target state estimation, voltage and frequency control, and smart microgrids’ protection systems. The economic and physical/technical impacts of the FDI attacks on smart microgrids are also reviewed in this paper. The defensive strategies against FDI attacks are classified into protection strategies, in which selected meter measurements are protected, and detection/mitigation strategies, based on either static or dynamic detection. In this paper, implementation examples of FDI attacks’ construction and detection/mitigation in smart microgrids are provided. Samples of recent cyber-security projects in the world, and critical cyber-security standards of smart grids, are presented. Finally, future trends of cyber-security in smart microgrids are discussed.

Suggested Citation

  • Farzam Nejabatkhah & Yun Wei Li & Hao Liang & Rouzbeh Reza Ahrabi, 2020. "Cyber-Security of Smart Microgrids: A Survey," Energies, MDPI, vol. 14(1), pages 1-27, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:27-:d:466886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/27/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/27/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leszczyna, Rafał, 2018. "Standards on cyber security assessment of smart grid," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 70-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    2. Seung-Mo Je & Hanchul Woo & Jaehyeon Choi & Se-Hoon Jung & Jun-Ho Huh, 2022. "A Research Trend on Anonymous Signature and Authentication Methods for Privacy Invasion Preventability on Smart Grid and Power Plant Environments," Energies, MDPI, vol. 15(12), pages 1-20, June.
    3. Seppo Borenius & Pavithra Gopalakrishnan & Lina Bertling Tjernberg & Raimo Kantola, 2022. "Expert-Guided Security Risk Assessment of Evolving Power Grids," Energies, MDPI, vol. 15(9), pages 1-25, April.
    4. Ali, Imran & Arslan, Ahmad & Chowdhury, Maruf & Khan, Zaheer & Tarba, Shlomo Y., 2022. "Reimagining global food value chains through effective resilience to COVID-19 shocks and similar future events: A dynamic capability perspective," Journal of Business Research, Elsevier, vol. 141(C), pages 1-12.
    5. Gaurav Chaudhary & Jacob J. Lamb & Odne S. Burheim & Bjørn Austbø, 2021. "Review of Energy Storage and Energy Management System Control Strategies in Microgrids," Energies, MDPI, vol. 14(16), pages 1-26, August.
    6. Richard Wallsgrove & Jisuk Woo & Jae-Hyup Lee & Lorraine Akiba, 2021. "The Emerging Potential of Microgrids in the Transition to 100% Renewable Energy Systems," Energies, MDPI, vol. 14(6), pages 1-28, March.
    7. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    8. Aron Kondoro & Imed Ben Dhaou & Hannu Tenhunen & Nerey Mvungi, 2021. "A Low Latency Secure Communication Architecture for Microgrid Control," Energies, MDPI, vol. 14(19), pages 1-26, October.
    9. Arman Goudarzi & Farzad Ghayoor & Muhammad Waseem & Shah Fahad & Issa Traore, 2022. "A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook," Energies, MDPI, vol. 15(19), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    2. Khazaei, Javad & Amini, M. Hadi, 2021. "Protection of large-scale smart grids against false data injection cyberattacks leading to blackouts," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    3. Milan Stojkov & Nikola Dalčeković & Branko Markoski & Branko Milosavljević & Goran Sladić, 2021. "Towards Cross-Standard Compliance Readiness: Security Requirements Model for Smart Grid," Energies, MDPI, vol. 14(21), pages 1-29, October.
    4. Hamed Taherdoost, 2022. "Understanding Cybersecurity Frameworks and Information Security Standards—A Review and Comprehensive Overview," Post-Print hal-03741855, HAL.
    5. Jinchao Li & Tianzhi Li & Liu Han, 2018. "Research on the Evaluation Model of a Smart Grid Development Level Based on Differentiation of Development Demand," Sustainability, MDPI, vol. 10(11), pages 1-25, November.
    6. Arman Goudarzi & Farzad Ghayoor & Muhammad Waseem & Shah Fahad & Issa Traore, 2022. "A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook," Energies, MDPI, vol. 15(19), pages 1-32, September.
    7. Luiz Fernando Ribas Monteiro & Yuri R. Rodrigues & A. C. Zambroni de Souza, 2023. "Cybersecurity in Cyber–Physical Power Systems," Energies, MDPI, vol. 16(12), pages 1-34, June.
    8. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani, 2021. "Energy system resilience – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Kimani, Kenneth & Oduol, Vitalice & Langat, Kibet, 2019. "Cyber security challenges for IoT-based smart grid networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 36-49.
    10. Hamed Taherdoost, 2022. "Understanding Cybersecurity Frameworks and Information Security Standards—A Review and Comprehensive Overview," Post-Print hal-03741854, HAL.
    11. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    12. Randall, Rick G. & Allen, Stuart, 2021. "Cybersecurity professionals information sharing sources and networks in the U.S. electrical power industry," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
    13. Jena, Prasanta Kumar & Ghosh, Subhojit & Koley, Ebha, 2021. "Design of a coordinated cyber-physical attack in IoT based smart grid under limited intruder accessibility," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:27-:d:466886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.