Dynamic Approach to Evaluate the Effect of Reducing District Heating Temperature on Indoor Thermal Comfort
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sameti, Mohammad & Haghighat, Fariborz, 2019. "Optimization of 4th generation distributed district heating system: Design and planning of combined heat and power," Renewable Energy, Elsevier, vol. 130(C), pages 371-387.
- Michalak, Piotr, 2014. "The simple hourly method of EN ISO 13790 standard in Matlab/Simulink: A comparative study for the climatic conditions of Poland," Energy, Elsevier, vol. 75(C), pages 568-578.
- Michael-Allan Millar & Neil Burnside & Zhibin Yu, 2019. "An Investigation into the Limitations of Low Temperature District Heating on Traditional Tenement Buildings in Scotland," Energies, MDPI, vol. 12(13), pages 1-17, July.
- Jean Pierre Campana & Gian Luca Morini, 2019. "BESTEST and EN ISO 52016 Benchmarking of ALMABuild, a New Open-Source Simulink Tool for Dynamic Energy Modelling of Buildings," Energies, MDPI, vol. 12(15), pages 1-20, July.
- Francesco Mancini & Benedetto Nastasi, 2019. "Energy Retrofitting Effects on the Energy Flexibility of Dwellings," Energies, MDPI, vol. 12(14), pages 1-19, July.
- Tronchin, Lamberto & Fabbri, Kristian, 2012. "Energy Performance Certificate of building and confidence interval in assessment: An Italian case study," Energy Policy, Elsevier, vol. 48(C), pages 176-184.
- Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
- Lukas Lundström & Jan Akander & Jesús Zambrano, 2019. "Development of a Space Heating Model Suitable for the Automated Model Generation of Existing Multifamily Buildings—A Case Study in Nordic Climate," Energies, MDPI, vol. 12(3), pages 1-27, February.
- Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
- Tronchin, Lamberto & Manfren, Massimiliano & James, Patrick AB., 2018. "Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building," Energy, Elsevier, vol. 165(PA), pages 26-40.
- Ilaria Ballarini & Vincenzo Corrado, 2017. "A New Methodology for Assessing the Energy Consumption of Building Stocks," Energies, MDPI, vol. 10(8), pages 1-22, July.
- Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
- Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
- Iora, Paolo & Beretta, Gian Paolo & Ghoniem, Ahmed F., 2019. "Exergy loss based allocation method for hybrid renewable-fossil power plants applied to an integrated solar combined cycle," Energy, Elsevier, vol. 173(C), pages 893-901.
- Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
- Nageler, P. & Zahrer, G. & Heimrath, R. & Mach, T. & Mauthner, F. & Leusbrock, I. & Schranzhofer, H. & Hochenauer, C., 2017. "Novel validated method for GIS based automated dynamic urban building energy simulations," Energy, Elsevier, vol. 139(C), pages 142-154.
- Francesco Neirotti & Michel Noussan & Stefano Riverso & Giorgio Manganini, 2019. "Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks," Energies, MDPI, vol. 12(2), pages 1-17, January.
- Tunzi, Michele & Østergaard, Dorte Skaarup & Svendsen, Svend & Boukhanouf, Rabah & Cooper, Edward, 2016. "Method to investigate and plan the application of low temperature district heating to existing hydraulic radiator systems in existing buildings," Energy, Elsevier, vol. 113(C), pages 413-421.
- Di Turi, Silvia & Stefanizzi, Pietro, 2015. "Energy analysis and refurbishment proposals for public housing in the city of Bari, Italy," Energy Policy, Elsevier, vol. 79(C), pages 58-71.
- Ashfaq, Asad & Ianakiev, Anton, 2018. "Investigation of hydraulic imbalance for converting existing boiler based buildings to low temperature district heating," Energy, Elsevier, vol. 160(C), pages 200-212.
- Zirak, Maryam & Weiler, Verena & Hein, Martin & Eicker, Ursula, 2020. "Urban models enrichment for energy applications: Challenges in energy simulation using different data sources for building age information," Energy, Elsevier, vol. 190(C).
- Michel Noussan & Benedetto Nastasi, 2018. "Data Analysis of Heating Systems for Buildings—A Tool for Energy Planning, Policies and Systems Simulation," Energies, MDPI, vol. 11(1), pages 1-15, January.
- Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
- Edoardo Alessio Piana & Benedetta Grassi & Laurent Socal, 2020. "A Standard-Based Method to Simulate the Behavior of Thermal Solar Systems with a Stratified Storage Tank," Energies, MDPI, vol. 13(1), pages 1-22, January.
- Westermann, Paul & Deb, Chirag & Schlueter, Arno & Evins, Ralph, 2020. "Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data," Applied Energy, Elsevier, vol. 264(C).
- Benedetto Nastasi & Massimiliano Manfren & Michel Noussan, 2020. "Open Data and Energy Analytics," Energies, MDPI, vol. 13(9), pages 1-3, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pardo-Bosch, Francesc & Blanco, Ana & Mendoza, Nora & Libreros, Bibiana & Tejedor, Blanca & Pujadas, Pablo, 2023. "Sustainable deployment of energy efficient district heating: city business model," Energy Policy, Elsevier, vol. 181(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
- Manfren, Massimiliano & Nastasi, Benedetto & Tronchin, Lamberto & Groppi, Daniele & Garcia, Davide Astiaso, 2021. "Techno-economic analysis and energy modelling as a key enablers for smart energy services and technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
- Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
- Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
- Hettinga, Sanne & van ’t Veer, Rein & Boter, Jaap, 2023. "Large scale energy labelling with models: The EU TABULA model versus machine learning with open data," Energy, Elsevier, vol. 264(C).
- Østergaard, Dorte Skaarup & Tunzi, Michele & Svendsen, Svend, 2021. "What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently," Energy, Elsevier, vol. 227(C).
- Zhang Deng & Yixing Chen & Xiao Pan & Zhiwen Peng & Jingjing Yang, 2021. "Integrating GIS-Based Point of Interest and Community Boundary Datasets for Urban Building Energy Modeling," Energies, MDPI, vol. 14(4), pages 1-17, February.
- Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Svendsen, Svend, 2021. "Strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 231(C).
- Amar Bennadji & Mohammed Seddiki & Jamal Alabid & Richard Laing & David Gray, 2022. "Predicting Energy Savings of the UK Housing Stock under a Step-by-Step Energy Retrofit Scenario towards Net-Zero," Energies, MDPI, vol. 15(9), pages 1-18, April.
- Gerald Schweiger & Fabian Kuttin & Alfred Posch, 2019. "District Heating Systems: An Analysis of Strengths, Weaknesses, Opportunities, and Threats of the 4GDH," Energies, MDPI, vol. 12(24), pages 1-15, December.
- Michele Tunzi & Matthieu Ruysschaert & Svend Svendsen & Kevin Michael Smith, 2020. "Double Loop Network for Combined Heating and Cooling in Low Heat Density Areas," Energies, MDPI, vol. 13(22), pages 1-24, November.
- Manfren, Massimiliano & James, Patrick AB. & Tronchin, Lamberto, 2022. "Data-driven building energy modelling – An analysis of the potential for generalisation through interpretable machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
- Antoine Reguis & Behrang Vand & John Currie, 2021. "Challenges for the Transition to Low-Temperature Heat in the UK: A Review," Energies, MDPI, vol. 14(21), pages 1-26, November.
- Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
- Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
More about this item
Keywords
dynamic model; energy performance of buildings; low temperature district heating; indoor comfort; renovation; urban scale;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:25-:d:466904. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.