IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2100-d349233.html
   My bibliography  Save this article

Baselines for Energy Use and Carbon Emission Intensities in Hellenic Nonresidential Buildings

Author

Listed:
  • Kalliopi G. Droutsa

    (Group Energy Conservation, Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 118 10 Athens, Greece
    Laboratory of Atmospheric Physics, Department of Physics, School of Science, University of Patras, 265 04 Patras, Greece)

  • Constantinos A. Balaras

    (Group Energy Conservation, Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 118 10 Athens, Greece)

  • Spyridon Lykoudis

    (Enargia WG, Akrita 66, 24132 Kalamata, Greece)

  • Simon Kontoyiannidis

    (Group Energy Conservation, Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 118 10 Athens, Greece)

  • Elena G. Dascalaki

    (Group Energy Conservation, Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 118 10 Athens, Greece)

  • Athanassios A. Argiriou

    (Laboratory of Atmospheric Physics, Department of Physics, School of Science, University of Patras, 265 04 Patras, Greece)

Abstract

This work exploits data from 30,000 energy performance certificates of whole nonresidential (NR) buildings in Greece. The available information is analyzed for 30 different NR building uses (e.g., hotels, schools, sports facilities, hospitals, retails, offices) and four main services (space heating, space cooling, domestic hot water and lighting). Data are screened in order to exclude outliers and checked for consistency with the Hellenic NR building stock. The average energy use and CO 2 emission intensities for all building uses are calculated, as well as the respective energy ratings in order to gain a better understanding of the NR sector. Finally, in an attempt to determine whether these values are representative for the various Hellenic NR building uses, their temporal evolution is investigated. The average primary energy use intensity is 448.0 kWh/m 2 for all NR buildings, while the CO 2 emissions reach 147.5 kgCO 2 /m 2 . The derived energy baselines reveal that indoor sports halls/swimming pools have the highest energy use, while private cram schools/conservatories have the lowest, due to their operational patterns. Generally, from the four services taken into account, lighting is the most energy consuming, followed by cooling, heating and finally domestic hot water. For a total of 11 building uses, more data from the certificates will be necessary for deriving representative baselines, but, when it comes to buildings categories, more data are required.

Suggested Citation

  • Kalliopi G. Droutsa & Constantinos A. Balaras & Spyridon Lykoudis & Simon Kontoyiannidis & Elena G. Dascalaki & Athanassios A. Argiriou, 2020. "Baselines for Energy Use and Carbon Emission Intensities in Hellenic Nonresidential Buildings," Energies, MDPI, vol. 13(8), pages 1-29, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2100-:d:349233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Droutsa, Kalliopi G. & Kontoyiannidis, Simon & Dascalaki, Elena G. & Balaras, Constantinos A., 2016. "Mapping the energy performance of hellenic residential buildings from EPC (energy performance certificate) data," Energy, Elsevier, vol. 98(C), pages 284-295.
    2. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    3. Dall’O’, Giuliano & Sarto, Luca & Sanna, Nicola & Tonetti, Valeria & Ventura, Martina, 2015. "On the use of an energy certification database to create indicators for energy planning purposes: Application in northern Italy," Energy Policy, Elsevier, vol. 85(C), pages 207-217.
    4. Mathew, Paul A. & Dunn, Laurel N. & Sohn, Michael D. & Mercado, Andrea & Custudio, Claudine & Walter, Travis, 2015. "Big-data for building energy performance: Lessons from assembling a very large national database of building energy use," Applied Energy, Elsevier, vol. 140(C), pages 85-93.
    5. Dascalaki, E.G. & Balaras, C.A. & Gaglia, A.G. & Droutsa, K.G. & Kontoyiannidis, S., 2012. "Energy performance of buildings—EPBD in Greece," Energy Policy, Elsevier, vol. 45(C), pages 469-477.
    6. Marta Gangolells & Miquel Casals & Jaume Ferré-Bigorra & Núria Forcada & Marcel Macarulla & Kàtia Gaspar & Blanca Tejedor, 2019. "Energy Benchmarking of Existing Office Stock in Spain: Trends and Drivers," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    7. Antonio Attanasio & Marco Savino Piscitelli & Silvia Chiusano & Alfonso Capozzoli & Tania Cerquitelli, 2019. "Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates," Energies, MDPI, vol. 12(7), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Skandalos, Nikolaos & Karamanis, Dimitris, 2021. "An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones," Applied Energy, Elsevier, vol. 295(C).
    2. Lambros T. Doulos & Aris Tsangrassoulis & Evangelos-Nikolaos Madias & Spyros Niavis & Antonios Kontadakis & Panagiotis A. Kontaxis & Vassiliki T. Kontargyri & Katerina Skalkou & Frangiskos Topalis & E, 2020. "Examining the Impact of Daylighting and the Corresponding Lighting Controls to the Users of Office Buildings," Energies, MDPI, vol. 13(15), pages 1-25, August.
    3. Gibbons, Laurence & Javed, Saqib, 2022. "A review of HVAC solution-sets and energy performace of nearly zero-energy multi-story apartment buildings in Nordic climates by statistical analysis of environmental performance certificates and lite," Energy, Elsevier, vol. 238(PA).
    4. Constantinos A. Balaras, 2022. "Building Energy Audits—Diagnosis and Retrofitting towards Decarbonization and Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-4, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksandar S. Anđelković & Miroslav Kljajić & Dušan Macura & Vladimir Munćan & Igor Mujan & Mladen Tomić & Željko Vlaović & Borivoj Stepanov, 2021. "Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings?," Energies, MDPI, vol. 14(12), pages 1-19, June.
    2. Antonio Attanasio & Marco Savino Piscitelli & Silvia Chiusano & Alfonso Capozzoli & Tania Cerquitelli, 2019. "Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates," Energies, MDPI, vol. 12(7), pages 1-25, April.
    3. Pagliaro, Francesca & Hugony, Francesca & Zanghirella, Fabio & Basili, Rossano & Misceo, Monica & Colasuonno, Luca & Del Fatto, Vincenzo, 2021. "Assessing building energy performance and energy policy impact through the combined analysis of EPC data – The Italian case study of SIAPE," Energy Policy, Elsevier, vol. 159(C).
    4. Marta Gangolells & Miquel Casals & Jaume Ferré-Bigorra & Núria Forcada & Marcel Macarulla & Kàtia Gaspar & Blanca Tejedor, 2019. "Energy Benchmarking of Existing Office Stock in Spain: Trends and Drivers," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    5. Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
    6. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    7. Hettinga, Sanne & van ’t Veer, Rein & Boter, Jaap, 2023. "Large scale energy labelling with models: The EU TABULA model versus machine learning with open data," Energy, Elsevier, vol. 264(C).
    8. Spyridaki, Niki-Artemis & Stavrakas, Vassilis & Dendramis, Yiannis & Flamos, Alexandros, 2020. "Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector," Energy Policy, Elsevier, vol. 140(C).
    9. Wiethe, Christian & Wenninger, Simon, 2023. "The influence of building energy performance prediction accuracy on retrofit rates," Energy Policy, Elsevier, vol. 177(C).
    10. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & López-González, Luis M. & Olasolo-Alonso, Pablo, 2018. "Environmental and energy impact of the EPBD in residential buildings in hot and temperate Mediterranean zones: The case of Spain," Energy, Elsevier, vol. 161(C), pages 618-634.
    11. Cichowicz, Robert & Jerominko, Tomasz, 2023. "Comparison of calculation and consumption methods for determining Energy Performance Certificates (EPC) in the case of multi-family residential buildings in Poland (Central-Eastern Europe)," Energy, Elsevier, vol. 282(C).
    12. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    13. Gibbons, Laurence & Javed, Saqib, 2022. "A review of HVAC solution-sets and energy performace of nearly zero-energy multi-story apartment buildings in Nordic climates by statistical analysis of environmental performance certificates and lite," Energy, Elsevier, vol. 238(PA).
    14. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Dalia Streimikiene & Vidas Lekavičius & Tomas Baležentis & Grigorios L. Kyriakopoulos & Josef Abrhám, 2020. "Climate Change Mitigation Policies Targeting Households and Addressing Energy Poverty in European Union," Energies, MDPI, vol. 13(13), pages 1-24, July.
    16. Elena G. Dascalaki & Poulia A. Argiropoulou & Constantinos A. Balaras & Kalliopi G. Droutsa & Simon Kontoyiannidis, 2020. "Benchmarks for Embodied and Operational Energy Assessment of Hellenic Single-Family Houses," Energies, MDPI, vol. 13(17), pages 1-36, August.
    17. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    18. Hyunjoo Lee & Misuk Lee & Sesil Lim, 2018. "Do Consumers Care about the Energy Efficiency of Buildings? Understanding Residential Choice Based on Energy Performance Certificates," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    19. Xie, Hailun & Eames, Matt & Mylona, Anastasia & Davies, Hywel & Challenor, Peter, 2024. "Creating granular climate zones for future-proof building design in the UK," Applied Energy, Elsevier, vol. 357(C).
    20. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & López-González, Luis M. & Olasolo-Alonso, Pablo, 2019. "Towards nearly zero-energy buildings in Mediterranean countries: Energy Performance of Buildings Directive evolution and the energy rehabilitation challenge in the Spanish residential sector," Energy, Elsevier, vol. 176(C), pages 335-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2100-:d:349233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.