IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1875-d344563.html
   My bibliography  Save this article

Lifetime Analysis of IGBT Power Modules in Passively Cooled Tidal Turbine Converters

Author

Listed:
  • Faisal Wani

    (Maritime and Transportation Technology, Delft University of Technology, 2628 CD Delft, The Netherlands
    Current address: Mekelweg 2, 2628 CD Delft, The Netherlands.)

  • Udai Shipurkar

    (Maritime and Transportation Technology, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Jianning Dong

    (Electrical Sustainable Energy, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Henk Polinder

    (Maritime and Transportation Technology, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Antonio Jarquin-Laguna

    (Maritime and Transportation Technology, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Kaswar Mostafa

    (Institute for Energy Systems, University of Edinburgh, Edinburgh EH9 3DW, UK)

  • George Lavidas

    (Maritime and Transportation Technology, Delft University of Technology, 2628 CD Delft, The Netherlands)

Abstract

Thermal cycling is one of the major reasons for failure in power electronic converters. For submerged tidal turbine converters investigating this failure mode is critical in improving the reliability, and minimizing the cost of energy from tidal turbines. This paper considers a submerged tidal turbine converter which is passively cooled by seawater, and where the turbine has fixed-pitch blades. In this respect, this study is different from similar studies on wind turbine converters, which are mostly cooled by active methods, and where turbines are mostly pitch controlled. The main goal is to quantify the impact of surface waves and turbulence in tidal stream velocity on the lifetime of the converter IGBT (insulated gate bipolar transistor) modules. The lifetime model of the IGBT modules is based on the accumulation of fatigue due to thermal cycling. Results indicate that turbulence and surface waves can have a significant impact on the lifetime of the IGBT modules. Furthermore, to accelerate the speed of the lifetime calculation, this paper uses a modified approach by dividing the thermal models into low and high frequency models. The final calculated lifetime values suggest that relying on passive cooling could be adequate for the tidal converters as far as thermal cycling is concerned.

Suggested Citation

  • Faisal Wani & Udai Shipurkar & Jianning Dong & Henk Polinder & Antonio Jarquin-Laguna & Kaswar Mostafa & George Lavidas, 2020. "Lifetime Analysis of IGBT Power Modules in Passively Cooled Tidal Turbine Converters," Energies, MDPI, vol. 13(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1875-:d:344563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brian G. Sellar & Gareth Wakelam & Duncan R. J. Sutherland & David M. Ingram & Vengatesan Venugopal, 2018. "Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves," Energies, MDPI, vol. 11(1), pages 1-23, January.
    2. Zhou, Zhibin & Benbouzid, Mohamed & Frédéric Charpentier, Jean & Scuiller, Franck & Tang, Tianhao, 2013. "A review of energy storage technologies for marine current energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 390-400.
    3. Katharina Fischer & Karoline Pelka & Sebastian Puls & Max-Hermann Poech & Axel Mertens & Arne Bartschat & Bernd Tegtmeier & Christian Broer & Jan Wenske, 2019. "Exploring the Causes of Power-Converter Failure in Wind Turbines based on Comprehensive Field-Data and Damage Analysis," Energies, MDPI, vol. 12(4), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faisal Wani & Udai Shipurkar & Jianning Dong & Henk Polinder, 2021. "Thermal Cycling in Converter IGBT Modules with Different Cooling Systems in Pitch- and Active Stall-Controlled Tidal Turbines," Energies, MDPI, vol. 14(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faisal Wani & Udai Shipurkar & Jianning Dong & Henk Polinder, 2021. "Thermal Cycling in Converter IGBT Modules with Different Cooling Systems in Pitch- and Active Stall-Controlled Tidal Turbines," Energies, MDPI, vol. 14(20), pages 1-25, October.
    2. Christelle Auguste & Philip Marsh & Jean-Roch Nader & Remo Cossu & Irene Penesis, 2020. "Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics," Energies, MDPI, vol. 13(20), pages 1-22, October.
    3. Zhang, Yidan & Shek, Jonathan K.H. & Mueller, Markus A., 2023. "Controller design for a tidal turbine array, considering both power and loads aspects," Renewable Energy, Elsevier, vol. 216(C).
    4. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    5. Katharina Fischer & Michael Steffes & Karoline Pelka & Bernd Tegtmeier & Martin Dörenkämper, 2021. "Humidity in Power Converters of Wind Turbines—Field Conditions and Their Relation with Failures," Energies, MDPI, vol. 14(7), pages 1-27, March.
    6. Liu, Zhengxuan & Zhou, Yuekuan & Yan, Jun & Tostado-Véliz, Marcos, 2023. "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, Elsevier, vol. 284(C).
    7. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    8. José Manuel Oliver & Maria Dolores Esteban & José-Santos López-Gutiérrez & Vicente Negro & Maria Graça Neves, 2021. "Optimizing Wave Overtopping Energy Converters by ANN Modelling: Evaluating the Overtopping Rate Forecasting as the First Step," Sustainability, MDPI, vol. 13(3), pages 1-25, February.
    9. Eklas Hossain & Hossain Mansur Resalat Faruque & Md. Samiul Haque Sunny & Naeem Mohammad & Nafiu Nawar, 2020. "A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects," Energies, MDPI, vol. 13(14), pages 1-127, July.
    10. Li, Sheying & Cai, Yang-Hui & Schäfer, Andrea I. & Richards, Bryce S., 2019. "Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Calero Quesada, María Concepción & García Lafuente, Jesús & Sánchez Garrido, José Carlos & Sammartino, Simone & Delgado, Javier, 2014. "Energy of marine currents in the Strait of Gibraltar and its potential as a renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 98-109.
    12. Loisel, Rodica & Sanchez-Angulo, Martin & Schoefs, Franck & Gaillard, Alexandre, 2018. "Integration of tidal range energy with undersea pumped storage," Renewable Energy, Elsevier, vol. 126(C), pages 38-48.
    13. Pawel Szczesniak, 2019. "Challenges and Design Requirements for Industrial Applications of AC/AC Power Converters without DC-Link," Energies, MDPI, vol. 12(8), pages 1-18, April.
    14. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    15. Charles Greenwood & Arne Vogler & Vengatesan Venugopal, 2019. "On the Variation of Turbulence in a High-Velocity Tidal Channel," Energies, MDPI, vol. 12(4), pages 1-21, February.
    16. Sheng, L. & Zhou, Z. & Charpentier, J.F. & Benbouzid, M.E.H., 2017. "Stand-alone island daily power management using a tidal turbine farm and an ocean compressed air energy storage system," Renewable Energy, Elsevier, vol. 103(C), pages 286-294.
    17. Ewing, Fraser J. & Thies, Philipp R. & Shek, Jonathan & Ferreira, Claudio Bittencourt, 2020. "Probabilistic failure rate model of a tidal turbine pitch system," Renewable Energy, Elsevier, vol. 160(C), pages 987-997.
    18. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Adefarati, T. & Bansal, R.C., 2017. "Reliability assessment of distribution system with the integration of renewable distributed generation," Applied Energy, Elsevier, vol. 185(P1), pages 158-171.
    20. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1875-:d:344563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.