IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i2d10.1007_s10614-023-10460-w.html
   My bibliography  Save this article

Effective Crude Oil Prediction Using CHS-EMD Decomposition and PS-RNN Model

Author

Listed:
  • A. Usha Ruby

    (VIT Bhopal University)

  • J. George Chellin Chandran

    (VIT Bhopal University)

  • B. N. Chaithanya

    (GITAM School of Technology)

  • T. J. Swasthika Jain

    (GITAM School of Technology)

  • Renuka Patil

    (GITAM School of Technology)

Abstract

There is an urgent need for the prediction of oil price; in addition, for various small and large industries, individuals, and the government, it is a blessing. Nevertheless, owing to the nonlinear inherent in crude oil price (COP), market inter-relationship in oil price time series, chaotic behavior of the COP, and inherent fractality in oil price, the prediction of COP is tedious. By employing a polyharmony spline centered recurrent neural network (PS-RNN) the work presented a new framework of COP prediction to tackle those problems. By deploying the cubic hermite spline grounded on empirical mode decomposition, which offers decomposed data, the system tackles the intrinsic characteristics of fluctuating data. The knowledgeable features are extracted using simple moving average (SMA), and exponential moving average technical indicators. By utilizing the Gaussian distribution-centric Aquila optimization that aids to endure nonlinear inherent of data within low computation time, the most related features are elected. Finally, the chosen features get trained to PS-RNN. Regarding mean absolute error, root mean squared error , mean absolute percent error (MAPE), along with Symmetric MAPE, the system obtains a low relative fault along with prevents misprediction of data; in addition, sustains higher to prevailing techniques.

Suggested Citation

  • A. Usha Ruby & J. George Chellin Chandran & B. N. Chaithanya & T. J. Swasthika Jain & Renuka Patil, 2024. "Effective Crude Oil Prediction Using CHS-EMD Decomposition and PS-RNN Model," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1295-1314, August.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10460-w
    DOI: 10.1007/s10614-023-10460-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10460-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10460-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jue & Zhou, Hao & Hong, Tao & Li, Xiang & Wang, Shouyang, 2020. "A multi-granularity heterogeneous combination approach to crude oil price forecasting," Energy Economics, Elsevier, vol. 91(C).
    2. Chen, Yanhui & Zhang, Chuan & He, Kaijian & Zheng, Aibing, 2018. "Multi-step-ahead crude oil price forecasting using a hybrid grey wave model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 98-110.
    3. Chiroma, Haruna & Abdulkareem, Sameem & Herawan, Tutut, 2015. "Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction," Applied Energy, Elsevier, vol. 142(C), pages 266-273.
    4. Yang, Lu, 2019. "Connectedness of economic policy uncertainty and oil price shocks in a time domain perspective," Energy Economics, Elsevier, vol. 80(C), pages 219-233.
    5. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    6. Chai, Jian & Xing, Li-Min & Zhou, Xiao-Yang & Zhang, Zhe George & Li, Jie-Xun, 2018. "Forecasting the WTI crude oil price by a hybrid-refined method," Energy Economics, Elsevier, vol. 71(C), pages 114-127.
    7. Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
    8. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    9. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    10. Huang, Lili & Wang, Jun, 2018. "Global crude oil price prediction and synchronization based accuracy evaluation using random wavelet neural network," Energy, Elsevier, vol. 151(C), pages 875-888.
    11. Hualing Lin & Qiubi Sun, 2020. "Crude Oil Prices Forecasting: An Approach of Using CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks," Energies, MDPI, vol. 13(7), pages 1-21, March.
    12. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    2. Butler, Sunil & Kokoszka, Piotr & Miao, Hong & Shang, Han Lin, 2021. "Neural network prediction of crude oil futures using B-splines," Energy Economics, Elsevier, vol. 94(C).
    3. He, Huizi & Sun, Mei & Li, Xiuming & Mensah, Isaac Adjei, 2022. "A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features," Energy, Elsevier, vol. 244(PA).
    4. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    5. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    6. Jha, Nimish & Kumar Tanneru, Hemanth & Palla, Sridhar & Hussain Mafat, Iradat, 2024. "Multivariate analysis and forecasting of the crude oil prices: Part I – Classical machine learning approaches," Energy, Elsevier, vol. 296(C).
    7. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    8. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    9. Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
    10. Li, Ranran & Hu, Yucai & Heng, Jiani & Chen, Xueli, 2021. "A novel multiscale forecasting model for crude oil price time series," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    11. Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
    12. Zhao, Zhengling & Sun, Shaolong & Sun, Jingyun & Wang, Shouyang, 2024. "A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting," Energy, Elsevier, vol. 288(C).
    13. Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
    14. Yu, Hongchu & Fang, Zhixiang & Lu, Feng & Murray, Alan T. & Zhang, Hengcai & Peng, Peng & Mei, Qiang & Chen, Jinhai, 2019. "Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes," Applied Energy, Elsevier, vol. 237(C), pages 390-403.
    15. Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Mariem Nsaibi, 2023. "Do Gas Price and Uncertainty Indices Forecast Crude Oil Prices? Fresh Evidence Through XGBoost Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 663-687, August.
    16. Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
    17. Jiangwei Liu & Xiaohong Huang, 2021. "Forecasting Crude Oil Price Using Event Extraction," Papers 2111.09111, arXiv.org.
    18. Asit Kumar Das & Debahuti Mishra & Kaberi Das & Pradeep Kumar Mallick & Sachin Kumar & Mikhail Zymbler & Hesham El-Sayed, 2022. "Prophesying the Short-Term Dynamics of the Crude Oil Future Price by Adopting the Survival of the Fittest Principle of Improved Grey Optimization and Extreme Learning Machine," Mathematics, MDPI, vol. 10(7), pages 1-33, March.
    19. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
    20. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10460-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.