IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1519-d336055.html
   My bibliography  Save this article

Mapping of the Temperature–Entropy Diagrams of van der Waals Fluids

Author

Listed:
  • Attila R. Imre

    (Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
    Department of Thermohydraulics, Centre for Energy Research, POB. 49, H-1525 Budapest, Hungary)

  • Réka Kustán

    (Department of Thermohydraulics, Centre for Energy Research, POB. 49, H-1525 Budapest, Hungary)

  • Axel Groniewsky

    (Department of Thermohydraulics, Centre for Energy Research, POB. 49, H-1525 Budapest, Hungary)

Abstract

The shape of the temperature vs. specific entropy diagram of a working fluid is very important to understanding the behavior of fluid during the expansion phase of the organic Rankine cycle or similar processes. Traditional wet-dry-isentropic classifications of these materials are not sufficient; several materials remain unclassified or misclassified, while materials listed in the same class might show crucial differences. A novel classification, based on the characteristic points of the T–s diagrams was introduced recently, listing eight different classes. In this paper, we present a map of these classes for a model material, namely, the van der Waals fluid in reduced temperature (i.e., reduced molecular degree of freedom) space; the latter quantity is related to the molar isochoric specific heat. Although van der Waals fluid cannot be used to predict material properties quantitatively, the model gives a very good and proper qualitative description. Using this map, some peculiarities related to T – s diagrams of working fluids can be understood.

Suggested Citation

  • Attila R. Imre & Réka Kustán & Axel Groniewsky, 2020. "Mapping of the Temperature–Entropy Diagrams of van der Waals Fluids," Energies, MDPI, vol. 13(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1519-:d:336055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1519/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1519/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Albornoz, Jorge & Mejía, Andrés & Quinteros-Lama, Héctor & Garrido, José Matías, 2018. "A rigorous and accurate approach for predicting the wet-to-dry transition for working mixtures in organic Rankine cycles," Energy, Elsevier, vol. 156(C), pages 509-519.
    2. Juan A. White & Santiago Velasco, 2019. "Approximating the Temperature–Entropy Saturation Curve of ORC Working Fluids From the Ideal Gas Isobaric Heat Capacity," Energies, MDPI, vol. 12(17), pages 1-14, August.
    3. Garrido, José Matías & Quinteros-Lama, Héctor & Mejía, Andrés & Wisniak, Jaime & Segura, Hugo, 2012. "A rigorous approach for predicting the slope and curvature of the temperature–entropy saturation boundary of pure fluids," Energy, Elsevier, vol. 45(1), pages 888-899.
    4. White, J.A. & Velasco, S., 2018. "Characterizing wet and dry fluids in temperature-entropy diagrams," Energy, Elsevier, vol. 154(C), pages 269-276.
    5. Györke, Gábor & Deiters, Ulrich K. & Groniewsky, Axel & Lassu, Imre & Imre, Attila R., 2018. "Novel classification of pure working fluids for Organic Rankine Cycle," Energy, Elsevier, vol. 145(C), pages 288-300.
    6. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    7. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    8. Attila R. Imre & Réka Kustán & Axel Groniewsky, 2019. "Thermodynamic Selection of the Optimal Working Fluid for Organic Rankine Cycles," Energies, MDPI, vol. 12(10), pages 1-15, May.
    9. Qiu, Guoquan, 2012. "Selection of working fluids for micro-CHP systems with ORC," Renewable Energy, Elsevier, vol. 48(C), pages 565-570.
    10. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ladislao Eduardo Méndez-Cruz & Miguel Ángel Gutiérrez-Limón & Helen Lugo-Méndez & Raúl Lugo-Leyte & Teresa Lopez-Arenas & Mauricio Sales-Cruz, 2022. "Comparative Thermodynamic Analysis of the Performance of an Organic Rankine Cycle Using Different Working Fluids," Energies, MDPI, vol. 15(7), pages 1-23, April.
    2. Aram Mohammed Ahmed & László Kondor & Attila R. Imre, 2021. "Thermodynamic Efficiency Maximum of Simple Organic Rankine Cycles," Energies, MDPI, vol. 14(2), pages 1-17, January.
    3. Mafalda M. Miranda & Jasmin Raymond & Chrystel Dezayes, 2020. "Uncertainty and Risk Evaluation of Deep Geothermal Energy Source for Heat Production and Electricity Generation in Remote Northern Regions," Energies, MDPI, vol. 13(16), pages 1-35, August.
    4. González, Johan & Llovell, Fèlix & Garrido, José Matías & Quinteros-Lama, Héctor, 2022. "A rigorous approach for characterising the limiting optimal efficiency of working fluids in organic Rankine cycles," Energy, Elsevier, vol. 254(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan A. White & Santiago Velasco, 2019. "Approximating the Temperature–Entropy Saturation Curve of ORC Working Fluids From the Ideal Gas Isobaric Heat Capacity," Energies, MDPI, vol. 12(17), pages 1-14, August.
    2. Attila R. Imre & Réka Kustán & Axel Groniewsky, 2019. "Thermodynamic Selection of the Optimal Working Fluid for Organic Rankine Cycles," Energies, MDPI, vol. 12(10), pages 1-15, May.
    3. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    4. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    5. Xinxin Zhang & Yin Zhang & Min Cao & Jingfu Wang & Yuting Wu & Chongfang Ma, 2019. "Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander," Energies, MDPI, vol. 12(16), pages 1-23, August.
    6. Aram Mohammed Ahmed & László Kondor & Attila R. Imre, 2021. "Thermodynamic Efficiency Maximum of Simple Organic Rankine Cycles," Energies, MDPI, vol. 14(2), pages 1-17, January.
    7. Xinxin Zhang & Yin Zhang & Zhenlei Li & Jingfu Wang & Yuting Wu & Chongfang Ma, 2020. "Zeotropic Mixture Selection for an Organic Rankine Cycle Using a Single Screw Expander," Energies, MDPI, vol. 13(5), pages 1-20, February.
    8. Piotr Kolasiński, 2020. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders," Energies, MDPI, vol. 13(3), pages 1-28, January.
    9. Zhang, Xinxin & Zhang, Yin & Wang, Jingfu, 2020. "New classification of dry and isentropic working fluids and a method used to determine their optimal or worst condensation temperature used in Organic Rankine Cycle," Energy, Elsevier, vol. 201(C).
    10. Piotr Kolasiński, 2020. "Domestic Organic Rankine Cycle-Based Cogeneration Systems as a Way to Reduce Dust Emissions in Municipal Heating," Energies, MDPI, vol. 13(15), pages 1-22, August.
    11. Jovell, Daniel & Gonzalez-Olmos, Rafael & Llovell, Fèlix, 2022. "A computational drop-in assessment of hydrofluoroethers in Organic Rankine Cycles," Energy, Elsevier, vol. 254(PB).
    12. Tsai, Yu-Chun & Feng, Yong-Qiang & Shuai, Yong & Lai, Jhao-Hong & Leung, Michael K.H. & Wei, Yen & Hsu, Hua-Yi & Hung, Tzu-Chen, 2023. "Experimental validation of a 0.3 kW ORC for the future purposes in the study of low-grade thermal to power conversion," Energy, Elsevier, vol. 285(C).
    13. Daniarta, Sindu & Imre, Attila R. & Kolasiński, Piotr, 2022. "Thermodynamic efficiency of subcritical and transcritical power cycles utilizing selected ACZ working fluids," Energy, Elsevier, vol. 254(PA).
    14. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    15. Györke, Gábor & Deiters, Ulrich K. & Groniewsky, Axel & Lassu, Imre & Imre, Attila R., 2018. "Novel classification of pure working fluids for Organic Rankine Cycle," Energy, Elsevier, vol. 145(C), pages 288-300.
    16. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    17. González, Johan & Llovell, Fèlix & Garrido, José Matías & Quinteros-Lama, Héctor, 2022. "A rigorous approach for characterising the limiting optimal efficiency of working fluids in organic Rankine cycles," Energy, Elsevier, vol. 254(PA).
    18. Su, Wen & Zhao, Li & Deng, Shuai, 2017. "Group contribution methods in thermodynamic cycles: Physical properties estimation of pure working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 984-1001.
    19. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    20. Wahiba Yaïci & Andres Annuk & Evgueniy Entchev & Michela Longo & Janar Kalder, 2021. "Organic Rankine Cycle-Ground Source Heat Pump with Seasonal Energy Storage Based Micro-Cogeneration System in Cold Climates: The Case for Canada," Energies, MDPI, vol. 14(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1519-:d:336055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.