A rigorous approach for predicting the slope and curvature of the temperature–entropy saturation boundary of pure fluids
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2012.06.073
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Badr, O. & O'Callaghan, P. W. & Probert, S. D., 1990. "Rankine-cycle systems for harnessing power from low-grade energy sources," Applied Energy, Elsevier, vol. 36(4), pages 263-292.
- Fernández, F.J. & Prieto, M.M. & Suárez, I., 2011. "Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids," Energy, Elsevier, vol. 36(8), pages 5239-5249.
- Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
- Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
- Liu, Bo-Tau & Chien, Kuo-Hsiang & Wang, Chi-Chuan, 2004. "Effect of working fluids on organic Rankine cycle for waste heat recovery," Energy, Elsevier, vol. 29(8), pages 1207-1217.
- Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Xinxin & Zhang, Yin & Wang, Jingfu, 2020. "New classification of dry and isentropic working fluids and a method used to determine their optimal or worst condensation temperature used in Organic Rankine Cycle," Energy, Elsevier, vol. 201(C).
- González, Johan & Llovell, Fèlix & Garrido, José Matías & Quinteros-Lama, Héctor, 2023. "A study of the optimal conditions for organic Rankine cycles coupled with vapour compression refrigeration using a rigorous approach based on the Helmholtz energy function," Energy, Elsevier, vol. 285(C).
- Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
- Attila R. Imre & Réka Kustán & Axel Groniewsky, 2019. "Thermodynamic Selection of the Optimal Working Fluid for Organic Rankine Cycles," Energies, MDPI, vol. 12(10), pages 1-15, May.
- Juan A. White & Santiago Velasco, 2019. "Approximating the Temperature–Entropy Saturation Curve of ORC Working Fluids From the Ideal Gas Isobaric Heat Capacity," Energies, MDPI, vol. 12(17), pages 1-14, August.
- Su, Wen & Zhao, Li & Deng, Shuai & Zhao, Yanjie, 2017. "How to predict the vapor slope of temperature-entropy saturation boundary of working fluids from molecular groups?," Energy, Elsevier, vol. 135(C), pages 14-22.
- Attila R. Imre & Réka Kustán & Axel Groniewsky, 2020. "Mapping of the Temperature–Entropy Diagrams of van der Waals Fluids," Energies, MDPI, vol. 13(6), pages 1-15, March.
- Su, Wen & Zhao, Li & Deng, Shuai, 2017. "New knowledge on the temperature-entropy saturation boundary slope of working fluids," Energy, Elsevier, vol. 119(C), pages 211-217.
- Aram Mohammed Ahmed & László Kondor & Attila R. Imre, 2021. "Thermodynamic Efficiency Maximum of Simple Organic Rankine Cycles," Energies, MDPI, vol. 14(2), pages 1-17, January.
- Daniarta, Sindu & Imre, Attila R. & Kolasiński, Piotr, 2022. "Thermodynamic efficiency of subcritical and transcritical power cycles utilizing selected ACZ working fluids," Energy, Elsevier, vol. 254(PA).
- Su, Wen & Zhao, Li & Deng, Shuai, 2017. "Group contribution methods in thermodynamic cycles: Physical properties estimation of pure working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 984-1001.
- Jovell, Daniel & Gonzalez-Olmos, Rafael & Llovell, Fèlix, 2022. "A computational drop-in assessment of hydrofluoroethers in Organic Rankine Cycles," Energy, Elsevier, vol. 254(PB).
- Györke, Gábor & Deiters, Ulrich K. & Groniewsky, Axel & Lassu, Imre & Imre, Attila R., 2018. "Novel classification of pure working fluids for Organic Rankine Cycle," Energy, Elsevier, vol. 145(C), pages 288-300.
- Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
- He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
- Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
- Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
- Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
- Cho, Soo-Yong & Cho, Chong-Hyun, 2015. "An experimental study on the organic Rankine cycle to determine as to how efficiently utilize fluctuating thermal energy," Renewable Energy, Elsevier, vol. 80(C), pages 73-79.
- Cho, Soo-Yong & Cho, Chong-Hyun & Choi, Sang-Kyu, 2015. "Experiment and cycle analysis on a partially admitted axial-type turbine used in the organic Rankine cycle," Energy, Elsevier, vol. 90(P1), pages 643-651.
- Roy, J.P. & Mishra, M.K. & Misra, Ashok, 2011. "Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions," Applied Energy, Elsevier, vol. 88(9), pages 2995-3004.
- Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
- Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
- Cho, Soo-Yong & Cho, Chong-Hyun & Ahn, Kook-Young & Lee, Young Duk, 2014. "A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for fluctuations of the available thermal energy," Energy, Elsevier, vol. 64(C), pages 900-911.
- Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
- Ajimotokan, H.A. & Sher, I., 2015. "Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation," Applied Energy, Elsevier, vol. 154(C), pages 26-34.
- Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
- Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
- Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
- Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
- Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
- Li, You-Rong & Wang, Jian-Ning & Du, Mei-Tang, 2012. "Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle," Energy, Elsevier, vol. 42(1), pages 503-509.
- Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
More about this item
Keywords
T–S diagram; Organic Rankine cycle; Equations of state; Vapor–liquid equilibrium;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:888-899. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.