IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1432-d334433.html
   My bibliography  Save this article

Effectiveness of Scenedesmus sp. Biomass Grow and Nutrients Removal from Liquid Phase of Digestates

Author

Listed:
  • Marta Kisielewska

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Marcin Zieliński

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Marcin Dębowski

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Joanna Kazimierowicz

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska St. 45E, 15-351 Bialystok, Poland)

  • Zdzisława Romanowska-Duda

    (Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/13, 90-237 Lodz, Poland)

  • Magda Dudek

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

Abstract

One of the most important factors in determining the profitable production of microalgae biomass is the use of a cost effective growth medium that is rich in nutrients. The objective of the study was to determine the possibility of using digestates from anaerobic digestion of different feedstock mixtures as the media for Scenedesmus sp. cultivation. A different liquid digestate composition was obtained in terms of organic compounds, phosphorus, and nitrogen concentrations, depending on the substrates used in the anaerobic digestion. It was found that the highest biomass production was obtained when using digestate from anaerobic digestion of the feedstock mainly composed of microalgae biomass, which was characterized by low organic compounds concentration. In this case, the average biomass concentration reached 2382 mg total solids/L. A lower Scenedesmus sp. biomass yield was obtained using digestate from anaerobic digester processing feedstock based on maize silage and cattle menure. In the variants of the study, it was also found that the increase in the initial concentration of ammonia nitrogen in the growth medium up to 160 mg/L significantly reduced the growth of Scenedesmus sp. The results indicated the possibility of a high ammonia nitrogen and orthophosphates removal from anaerobic digestates by Scenedesmus sp. microalgae. Phosphorus concentration in the cultivation medium is a limiting factor for the growth of Scenedesmus sp. , thus phosphorus supplementation should be considered when using liquid digestate as the culture medium. The optimization model indicated that the volume of liquid digestate that was used for preparing the cultivation medium, the initial concentration of organic compounds, and the initial concentration of ammonia nitrogen had a significant impact on the production of Scenedesmus sp. biomass.

Suggested Citation

  • Marta Kisielewska & Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Zdzisława Romanowska-Duda & Magda Dudek, 2020. "Effectiveness of Scenedesmus sp. Biomass Grow and Nutrients Removal from Liquid Phase of Digestates," Energies, MDPI, vol. 13(6), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1432-:d:334433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    2. Rajeshwari, K. V. & Balakrishnan, M. & Kansal, A. & Lata, Kusum & Kishore, V. V. N., 2000. "State-of-the-art of anaerobic digestion technology for industrial wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 135-156, June.
    3. Cai, Ting & Park, Stephen Y. & Racharaks, Ratanachat & Li, Yebo, 2013. "Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production," Applied Energy, Elsevier, vol. 108(C), pages 486-492.
    4. Trivedi, Jayati & Aila, Mounika & Bangwal, D.P. & Kaul, Savita & Garg, M.O., 2015. "Algae based biorefinery—How to make sense?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 295-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    2. Afifi Akhiar & Felipe Guilayn & Michel Torrijos & Audrey Battimelli & Abd Halim Shamsuddin & Hélène Carrère, 2021. "Correlations between the Composition of Liquid Fraction of Full-Scale Digestates and Process Conditions," Energies, MDPI, vol. 14(4), pages 1-24, February.
    3. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2022. "Outflow from a Biogas Plant as a Medium for Microalgae Biomass Cultivation—Pilot Scale Study and Technical Concept of a Large-Scale Installation," Energies, MDPI, vol. 15(8), pages 1-18, April.
    4. Marcin Zieliński & Paulina Rusanowska & Magda Dudek & Adam Starowicz & Łukasz Barczak & Marcin Dębowski, 2024. "Efficiency of Photosynthetic Microbial Fuel Cells (pMFC) Depending on the Type of Microorganisms Inhabiting the Cathode Chamber," Energies, MDPI, vol. 17(10), pages 1-14, May.
    5. Zdzislawa Romanowska-Duda & Szymon Szufa & Mieczysław Grzesik & Krzysztof Piotrowski & Regina Janas, 2021. "The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow ( Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Bio," Energies, MDPI, vol. 14(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    2. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    3. Shokravi, Zahra & Shokravi, Hoofar & Atabani, A.E. & Lau, Woei Jye & Chyuan, Ong Hwai & Ismail, Ahmad Fauzi, 2022. "Impacts of the harvesting process on microalgae fatty acid profiles and lipid yields: Implications for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Tasić, Marija B. & Pinto, Luisa Fernanda Rios & Klein, Bruno Colling & Veljković, Vlada B. & Filho, Rubens Maciel, 2016. "Botryococcus braunii for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 260-270.
    5. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    6. Mendez, Lara & Mahdy, Ahmed & Ballesteros, Mercedes & González-Fernández, Cristina, 2014. "Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads," Applied Energy, Elsevier, vol. 129(C), pages 238-242.
    7. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2021. "The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge," Energies, MDPI, vol. 14(3), pages 1-16, January.
    8. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    9. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    10. Kostas, Emily T. & Adams, Jessica M.M. & Ruiz, Héctor A. & Durán-Jiménez, Gabriela & Lye, Gary J., 2021. "Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Barbera, Elena & Bertucco, Alberto & Kumar, Sandeep, 2018. "Nutrients recovery and recycling in algae processing for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 28-42.
    12. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Rachel Namuli & Claude B. Laflamme & Pragasen Pillay, 2011. "A Computer Program for Modeling the Conversion of Organic Waste to Energy," Energies, MDPI, vol. 4(11), pages 1-29, November.
    14. Nizami, Abdul-Sattar & Murphy, Jerry D., 2010. "What type of digester configurations should be employed to produce biomethane from grass silage?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1558-1568, August.
    15. Nogueira, Carlos Eduardo Camargo & de Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Azevedo, Ricardo Lessa, 2015. "Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 300-305.
    16. Aspasia A. Chatzipaschali & Anastassios G. Stamatis, 2012. "Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects," Energies, MDPI, vol. 5(9), pages 1-34, September.
    17. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    18. Faried, M. & Samer, M. & Abdelsalam, E. & Yousef, R.S. & Attia, Y.A. & Ali, A.S., 2017. "Biodiesel production from microalgae: Processes, technologies and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 893-913.
    19. Fernández, N. & Montalvo, S. & Borja, R. & Guerrero, L. & Sánchez, E. & Cortés, I. & Colmenarejo, M.F. & Travieso, L. & Raposo, F., 2008. "Performance evaluation of an anaerobic fluidized bed reactor with natural zeolite as support material when treating high-strength distillery wastewater," Renewable Energy, Elsevier, vol. 33(11), pages 2458-2466.
    20. Jazzar, Souhir & Olivares-Carrillo, Pilar & Pérez de los Ríos, Antonia & Marzouki, Mohamed Néjib & Acién-Fernández, Francisco Gabriel & Fernández-Sevilla, José María & Molina-Grima, Emilio & Smaali, I, 2015. "Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel," Applied Energy, Elsevier, vol. 148(C), pages 210-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1432-:d:334433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.