IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1413-d333863.html
   My bibliography  Save this article

Impact of Boundary Conditions on the Performance Enhancement of Advanced Control Strategies for a Residential Building with a Heat Pump and PV System with Energy Storage

Author

Listed:
  • Emmanouil Psimopoulos

    (Energy Technology, Dalarna University, 78170 Borlänge, Sweden
    Department of Engineering Sciences, Uppsala University, 751 21 Uppsala, Sweden)

  • Fatemeh Johari

    (Department of Engineering Sciences, Uppsala University, 751 21 Uppsala, Sweden)

  • Chris Bales

    (Energy Technology, Dalarna University, 78170 Borlänge, Sweden)

  • Joakim Widén

    (Department of Engineering Sciences, Uppsala University, 751 21 Uppsala, Sweden)

Abstract

Operational control strategies for the heating system of a single-family house with exhaust air heat pump and photovoltaic system and “smart” utilization of energy storage have been developed and evaluated in a simulation study. The main aim and novelty of this study is to evaluate the impact on the benefit of these advanced control strategies in terms of performance (energy use and economic) for a wide range of boundary conditions (country/climate, occupancy and appliance loads). Short-term weather data and historic price data for the same year as well as stochastic occupancy profiles that include the domestic hot water load are used as boundary for a parametric simulation study for the system modeled in detail in TRNSYS 17. Results show that the control using a forecast of dynamic electricity price leads to greater final energy savings than those due to the control using thermal storage for excess PV production in all of the examined locations except Sweden. The impact on self-consumption using thermal storage of heat produced by the heat pump using excess PV production is found to decrease linearly with increasing household electricity for all locations. A reduction in final energy of up to 842 kWh year −1 can be achieved just by the use of these algorithms. The net energy cost for the end-user follows the same trend as for final energy and can result in cost savings up to 175 € year −1 in Germany and Spain due to the use of the advanced control.

Suggested Citation

  • Emmanouil Psimopoulos & Fatemeh Johari & Chris Bales & Joakim Widén, 2020. "Impact of Boundary Conditions on the Performance Enhancement of Advanced Control Strategies for a Residential Building with a Heat Pump and PV System with Energy Storage," Energies, MDPI, vol. 13(6), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1413-:d:333863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Romero Rodríguez, Laura & Sánchez Ramos, José & Álvarez Domínguez, Servando & Eicker, Ursula, 2018. "Contributions of heat pumps to demand response: A case study of a plus-energy dwelling," Applied Energy, Elsevier, vol. 214(C), pages 191-204.
    2. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    3. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    4. Psimopoulos, Emmanouil & Bee, Elena & Widén, Joakim & Bales, Chris, 2019. "Techno-economic analysis of control algorithms for an exhaust air heat pump system for detached houses coupled to a photovoltaic system," Applied Energy, Elsevier, vol. 249(C), pages 355-367.
    5. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    6. Fischer, David & Bernhardt, Josef & Madani, Hatef & Wittwer, Christof, 2017. "Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV," Applied Energy, Elsevier, vol. 204(C), pages 93-105.
    7. López Prol, Javier & Steininger, Karl W., 2017. "Photovoltaic self-consumption regulation in Spain: Profitability analysis and alternative regulation schemes," Energy Policy, Elsevier, vol. 108(C), pages 742-754.
    8. Quoilin, Sylvain & Kavvadias, Konstantinos & Mercier, Arnaud & Pappone, Irene & Zucker, Andreas, 2016. "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Applied Energy, Elsevier, vol. 182(C), pages 58-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafał Figaj & Maciej Żołądek & Wojciech Goryl, 2020. "Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software," Energies, MDPI, vol. 13(14), pages 1-27, July.
    2. Mikel Arenas-Larrañaga & Maider Santos-Mugica & Laura Alonso-Ojanguren & Koldobika Martin-Escudero, 2023. "Energy and Cost Analysis of an Integrated Photovoltaic and Heat Pump Domestic System Considering Heating and Cooling Demands," Energies, MDPI, vol. 16(13), pages 1-27, July.
    3. Maria Pinamonti & Alessandro Prada & Paolo Baggio, 2020. "Rule-Based Control Strategy to Increase Photovoltaic Self-Consumption of a Modulating Heat Pump Using Water Storages and Building Mass Activation," Energies, MDPI, vol. 13(23), pages 1-21, November.
    4. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Sebastian Pater, 2023. "Increasing Energy Self-Consumption in Residential Photovoltaic Systems with Heat Pumps in Poland," Energies, MDPI, vol. 16(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psimopoulos, Emmanouil & Bee, Elena & Widén, Joakim & Bales, Chris, 2019. "Techno-economic analysis of control algorithms for an exhaust air heat pump system for detached houses coupled to a photovoltaic system," Applied Energy, Elsevier, vol. 249(C), pages 355-367.
    2. Gallego-Castillo, Cristobal & Heleno, Miguel & Victoria, Marta, 2021. "Self-consumption for energy communities in Spain: A regional analysis under the new legal framework," Energy Policy, Elsevier, vol. 150(C).
    3. Kuboth, Sebastian & Heberle, Florian & König-Haagen, Andreas & Brüggemann, Dieter, 2019. "Economic model predictive control of combined thermal and electric residential building energy systems," Applied Energy, Elsevier, vol. 240(C), pages 372-385.
    4. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    5. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    6. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    7. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    8. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).
    9. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    11. Aniello, Gianmarco & Bertsch, Valentin, 2023. "Shaping the energy transition in the residential sector: Regulatory incentives for aligning household and system perspectives," Applied Energy, Elsevier, vol. 333(C).
    12. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    13. Puranen, Pietari & Kosonen, Antti & Ahola, Jero, 2021. "Techno-economic viability of energy storage concepts combined with a residential solar photovoltaic system: A case study from Finland," Applied Energy, Elsevier, vol. 298(C).
    14. Ayala-Gilardón, A. & Sidrach-de-Cardona, M. & Mora-López, L., 2018. "Influence of time resolution in the estimation of self-consumption and self-sufficiency of photovoltaic facilities," Applied Energy, Elsevier, vol. 229(C), pages 990-997.
    15. Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
    16. Klamka, Jonas & Wolf, André & Ehrlich, Lars G., 2020. "Photovoltaic self-consumption after the support period: Will it pay off in a cross-sector perspective?," Renewable Energy, Elsevier, vol. 147(P1), pages 2374-2386.
    17. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    18. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    19. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    20. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1413-:d:333863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.