Reducing Operational Costs of Offshore HVDC Energy Export Systems Through Optimized Maintenance
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Martin, Rebecca & Lazakis, Iraklis & Barbouchi, Sami & Johanning, Lars, 2016. "Sensitivity analysis of offshore wind farm operation and maintenance cost and availability," Renewable Energy, Elsevier, vol. 85(C), pages 1226-1236.
- Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal," Applied Energy, Elsevier, vol. 117(C), pages 116-126.
- Olauson, Jon & Bergkvist, Mikael, 2015. "Modelling the Swedish wind power production using MERRA reanalysis data," Renewable Energy, Elsevier, vol. 76(C), pages 717-725.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Santos, F. & Gómez-Gesteira, M. & deCastro, M. & Añel, J.A. & Carvalho, D. & Costoya, Xurxo & Dias, J.M., 2018. "On the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding ocean," Applied Energy, Elsevier, vol. 228(C), pages 289-300.
- Ritter, Matthias & Deckert, Lars, 2017.
"Site assessment, turbine selection, and local feed-in tariffs through the wind energy index,"
Applied Energy, Elsevier, vol. 185(P2), pages 1087-1099.
- Ritter, Matthias & Deckert, Lars, 2015. "Site assessment, turbine selection, and local feed-in tariffs through the wind energy index," SFB 649 Discussion Papers 2015-046, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
- Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
- Cuevas-Figueroa, Gabriel & Stansby, Peter K. & Stallard, Timothy, 2022. "Accuracy of WRF for prediction of operational wind farm data and assessment of influence of upwind farms on power production," Energy, Elsevier, vol. 254(PB).
- Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
- Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015.
"Designing an index for assessing wind energy potential,"
Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
- Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2014. "Designing an index for assessing wind energy potential," SFB 649 Discussion Papers 2014-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
- Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.
- Jonasson, Erik & Fjellstedt, Christoffer & Temiz, Irina, 2024. "Grid impact of co-located offshore renewable energy sources," Renewable Energy, Elsevier, vol. 230(C).
- Nuño, Edgar & Maule, Petr & Hahmann, Andrea & Cutululis, Nicolaos & Sørensen, Poul & Karagali, Ioanna, 2018. "Simulation of transcontinental wind and solar PV generation time series," Renewable Energy, Elsevier, vol. 118(C), pages 425-436.
- Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
- Matti Koivisto & Kaushik Das & Feng Guo & Poul Sørensen & Edgar Nuño & Nicolaos Cutululis & Petr Maule, 2019. "Using time series simulation tools for assessing the effects of variable renewable energy generation on power and energy systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
- Becker, Raik & Thrän, Daniela, 2017. "Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors," Applied Energy, Elsevier, vol. 208(C), pages 252-262.
- Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Castorrini, Alessio & Gentile, Sabrina & Geraldi, Edoardo & Bonfiglioli, Aldo, 2023. "Investigations on offshore wind turbine inflow modelling using numerical weather prediction coupled with local-scale computational fluid dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
- Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
- Ulazia, Alain & Saenz, Jon & Ibarra-Berastegui, Gabriel, 2016. "Sensitivity to the use of 3DVAR data assimilation in a mesoscale model for estimating offshore wind energy potential. A case study of the Iberian northern coastline," Applied Energy, Elsevier, vol. 180(C), pages 617-627.
- Rabbani, R. & Zeeshan, M., 2020. "Exploring the suitability of MERRA-2 reanalysis data for wind energy estimation, analysis of wind characteristics and energy potential assessment for selected sites in Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 1240-1251.
- Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.
More about this item
Keywords
offshore wind energy; transmission system; HVDC; voltage source converter (VSC); maintenance; missing energy export;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1146-:d:327985. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.