IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p937-d322755.html
   My bibliography  Save this article

Evaluation of the Potential of Biomass to Energy in Portugal—Conclusions from the CONVERTE Project

Author

Listed:
  • Mariana Abreu

    (Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia-LNEG, I.P., 1649-038 Lisboa, Portugal)

  • Alberto Reis

    (Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia-LNEG, I.P., 1649-038 Lisboa, Portugal)

  • Patrícia Moura

    (Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia-LNEG, I.P., 1649-038 Lisboa, Portugal)

  • Ana Luisa Fernando

    (MEtRICs, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal)

  • António Luís

    (Unidade de Informação Geocientífica, Laboratório Nacional de Energia e Geologia-LNEG, I.P., 2610-999 Amadora, Portugal)

  • Lídia Quental

    (Unidade de Informação Geocientífica, Laboratório Nacional de Energia e Geologia-LNEG, I.P., 2610-999 Amadora, Portugal)

  • Pedro Patinha

    (Unidade de Informação Geocientífica, Laboratório Nacional de Energia e Geologia-LNEG, I.P., 2610-999 Amadora, Portugal)

  • Francisco Gírio

    (Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia-LNEG, I.P., 1649-038 Lisboa, Portugal)

Abstract

The main objective of the Portuguese project “CONVERTE-Biomass Potential for Energy” is to support the transition to a low-carbon economy, identifying biomass typologies in mainland Portugal, namely agri-forest waste, energy crops and microalgae. Therefore, the aim was to design and construct a georeferenced (mapping) database for mainland Portugal, to identify land availability for the implementation of energy crops and microalgae cultures, and to locate agricultural and forestry production areas (including their residues) with potential for sustainable exploitation for energy. The ArcGIS software was used as a Geographic Information System (GIS) tool, introducing the data corresponding to the type of soil, water needs and edaphoclimatic conditions in shapefile and raster data type, to assess the areas for the implantation of the biomass of interest. After analysing the data of interest in each map in ArcGIS, the intersection of all maps is presented, suggesting adequate areas and predicting biomass productions for the implementation of each culture in mainland Portugal. Under the conditions of the study, cardoon (72 kha, 1085 kt), paulownia (81 kha, 26 kt) and microalgae (29 kha, 1616 kt) presented the greater viability to be exploited as biomass to energy in degraded and marginal soils.

Suggested Citation

  • Mariana Abreu & Alberto Reis & Patrícia Moura & Ana Luisa Fernando & António Luís & Lídia Quental & Pedro Patinha & Francisco Gírio, 2020. "Evaluation of the Potential of Biomass to Energy in Portugal—Conclusions from the CONVERTE Project," Energies, MDPI, vol. 13(4), pages 1-32, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:937-:d:322755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Domínguez, Elena & Romaní, Aloia & Domingues, Lucília & Garrote, Gil, 2017. "Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme," Applied Energy, Elsevier, vol. 187(C), pages 777-789.
    2. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    3. Ferreira, Sérgio & Monteiro, Eliseu & Brito, Paulo & Vilarinho, Cândida, 2017. "Biomass resources in Portugal: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1221-1235.
    4. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    5. Edrisi, Sheikh Adil & Abhilash, P.C., 2016. "Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1537-1551.
    6. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2017. "Biomass in the generation of electricity in Portugal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 373-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leandro Gomes & Jorge Costa & Joana Moreira & Berta Cumbane & Marcelo Abias & Fernando Santos & Federica Zanetti & Andrea Monti & Ana Luisa Fernando, 2022. "Switchgrass and Giant Reed Energy Potential when Cultivated in Heavy Metals Contaminated Soils," Energies, MDPI, vol. 15(15), pages 1-28, July.
    2. Francesco Latterini & Walter Stefanoni & Alessandro Suardi & Vincenzo Alfano & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs," Energies, MDPI, vol. 13(13), pages 1-17, July.
    3. Vieira de Mendonça, Henrique & Assemany, Paula & Abreu, Mariana & Couto, Eduardo & Maciel, Alyne Martins & Duarte, Renata Lopes & Barbosa dos Santos, Marcela Granato & Reis, Alberto, 2021. "Microalgae in a global world: New solutions for old problems?," Renewable Energy, Elsevier, vol. 165(P1), pages 842-862.
    4. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.
    2. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    3. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    4. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Pooja Kandimalla & Priyanka Vatte & Chandra Sekhar Rao Bandaru, 2021. "Phycoremediation of automobile exhaust gases using green microalgae," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6301-6322, April.
    6. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    7. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    8. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    9. Muthu Ganesan Rajaram & Subramani Nagaraj & Manubolu Manjunath & Annakkili Baskara Boopathy & Chidambaram Kurinjimalar & Ramasamy Rengasamy & Thanasekaran Jayakumar & Joen-Rong Sheu & Jiun-Yi Li, 2018. "Biofuel and Biochemical Analysis of Amphora coffeaeformis RR03, a Novel Marine Diatom, Cultivated in an Open Raceway Pond," Energies, MDPI, vol. 11(6), pages 1-12, May.
    10. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    11. Martín, Lucas A. & Popovich, Cecilia A. & Martinez, Ana M. & Damiani, María C. & Leonardi, Patricia I., 2016. "Oil assessment of Halamphora coffeaeformis diatom growing in a hybrid two-stage system for biodiesel production," Renewable Energy, Elsevier, vol. 92(C), pages 127-135.
    12. Sun, Zhe & Zhou, Zhi, 2019. "Nature-inspired virus-assisted algal cell disruption for cost-effective biofuel production," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Peter, Angela Paul & Koyande, Apurav Krishna & Chew, Kit Wayne & Ho, Shih-Hsin & Chen, Wei-Hsin & Chang, Jo-Shu & Krishnamoorthy, Rambabu & Banat, Fawzi & Show, Pau Loke, 2022. "Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Kligerman, Debora Cynamon & Bouwer, Edward J., 2015. "Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1834-1846.
    15. Gilbert Ahamer, 2022. "Why Biomass Fuels Are Principally Not Carbon Neutral," Energies, MDPI, vol. 15(24), pages 1-39, December.
    16. Muhammad Hanafi Azami & Mark Savill, 2017. "Pulse Detonation Assessment for Alternative Fuels," Energies, MDPI, vol. 10(3), pages 1-19, March.
    17. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    18. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    19. Chiranjeevi, P. & Mohan, S. Venkata, 2016. "Critical parametric influence on microalgae cultivation towards maximizing biomass growth with simultaneous lipid productivity," Renewable Energy, Elsevier, vol. 98(C), pages 64-71.
    20. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:937-:d:322755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.