IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v71y2017icp373-378.html
   My bibliography  Save this article

Biomass in the generation of electricity in Portugal: A review

Author

Listed:
  • Nunes, L.J.R.
  • Matias, J.C.O.
  • Catalão, J.P.S.

Abstract

The quality and composition of biomass as used in Portugal's thermal power plants is highly variable. The biomass consists mainly of residual forest biomass derived from forestry operations and wood waste from industrial processes, in particular paper and pulp industry. Its quality and composition is influenced by the presence of moisture and inert fragments, the latter being incorporated during collection or as a consequence of adherence to the biomass prior to collection. This variability presents difficulties for the thermal power plants; besides being an additional operational cost, the presence of large amounts of water and inerts in biomass used as a fuel, can result in problems related to the instability of the combustion and the accumulation of ash or rock that have to be removed and discarded. The objective of this paper is to review the main parameters that influence the quality of biomass, while analysing the current state-of-the-art power generation from the biomass sector in Portugal, as a new contribution to earlier studies.

Suggested Citation

  • Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2017. "Biomass in the generation of electricity in Portugal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 373-378.
  • Handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:373-378
    DOI: 10.1016/j.rser.2016.12.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116311212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.12.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 621-632.
    2. Maraver, Daniel & Sin, Ana & Royo, Javier & Sebastián, Fernando, 2013. "Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters," Applied Energy, Elsevier, vol. 102(C), pages 1303-1313.
    3. Fournel, S. & Palacios, J.H. & Morissette, R. & Villeneuve, J. & Godbout, S. & Heitz, M. & Savoie, P., 2015. "Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops," Applied Energy, Elsevier, vol. 141(C), pages 247-259.
    4. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    5. Galik, Christopher S. & Abt, Robert C. & Latta, Gregory & Méley, Andréanne & Henderson, Jesse D., 2016. "Meeting renewable energy and land use objectives through public–private biomass supply partnerships," Applied Energy, Elsevier, vol. 172(C), pages 264-274.
    6. Vargas-Moreno, J.M. & Callejón-Ferre, A.J. & Pérez-Alonso, J. & Velázquez-Martí, B., 2012. "A review of the mathematical models for predicting the heating value of biomass materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3065-3083.
    7. Johansson, Bengt, 2013. "Security aspects of future renewable energy systems–A short overview," Energy, Elsevier, vol. 61(C), pages 598-605.
    8. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena, 2013. "Evaluating future scenarios for the power generation sector using a Multi-Criteria Decision Analysis (MCDA) tool: The Portuguese case," Energy, Elsevier, vol. 52(C), pages 126-136.
    9. Fernandes, Liliana & Ferreira, Paula, 2014. "Renewable energy scenarios in the Portuguese electricity system," Energy, Elsevier, vol. 69(C), pages 51-57.
    10. Kumar, Anil & Kumar, Nitin & Baredar, Prashant & Shukla, Ashish, 2015. "A review on biomass energy resources, potential, conversion and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 530-539.
    11. McIlveen-Wright, David R. & Huang, Ye & Rezvani, Sina & Redpath, David & Anderson, Mark & Dave, Ashok & Hewitt, Neil J., 2013. "A technical and economic analysis of three large scale biomass combustion plants in the UK," Applied Energy, Elsevier, vol. 112(C), pages 396-404.
    12. Shi, Yan & Ge, Ying & Chang, Jie & Shao, Hongbo & Tang, Yuli, 2013. "Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 432-437.
    13. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    14. Jezierska-Thöle, Aleksandra & Rudnicki, Roman & Kluba, Mieczysław, 2016. "Development of energy crops cultivation for biomass production in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 534-545.
    15. Kaygusuz, Kamil, 2012. "Energy for sustainable development: A case of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1116-1126.
    16. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    17. Manzano-Agugliaro, F. & Alcayde, A. & Montoya, F.G. & Zapata-Sierra, A. & Gil, C., 2013. "Scientific production of renewable energies worldwide: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 134-143.
    18. Aaron McCright & Riley Dunlap & Chenyang Xiao, 2013. "Perceived scientific agreement and support for government action on climate change in the USA," Climatic Change, Springer, vol. 119(2), pages 511-518, July.
    19. Lara Febrero & Enrique Granada & Araceli Regueiro & José Luis Míguez, 2015. "Influence of Combustion Parameters on Fouling Composition after Wood Pellet Burning in a Lab-Scale Low-Power Boiler," Energies, MDPI, vol. 8(9), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loução, Pedro O. & Ribau, João P. & Ferreira, Ana F., 2019. "Life cycle and decision analysis of electricity production from biomass – Portugal case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 452-480.
    2. Gal Hochman & Chrysostomos Tabakis, 2020. "The Potential Implications of the Introduction of Bioelectricity in South Korea," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    3. Nourelhouda Boukaous & Lokmane Abdelouahed & Mustapha Chikhi & Abdeslam-Hassen Meniai & Chetna Mohabeer & Taouk Bechara, 2018. "Combustion of Flax Shives, Beech Wood, Pure Woody Pseudo-Components and Their Chars: A Thermal and Kinetic Study," Energies, MDPI, vol. 11(8), pages 1-16, August.
    4. Azevedo, Susana Garrido & Sequeira, Tiago & Santos, Marcelo & Mendes, Luis, 2019. "Biomass-related sustainability: A review of the literature and interpretive structural modeling," Energy, Elsevier, vol. 171(C), pages 1107-1125.
    5. Leonel J.R. Nunes & Jorge T. Pereira da Costa & Radu Godina & João C.O. Matias & João P.S. Catalão, 2020. "A Logistics Management System for a Biomass-to-Energy Production Plant Storage Park," Energies, MDPI, vol. 13(20), pages 1-21, October.
    6. David Vera & Francisco Jurado & Bárbara de Mena & Jesús C. Hernández, 2019. "A Distributed Generation Hybrid System for Electric Energy Boosting Fueled with Olive Industry Wastes," Energies, MDPI, vol. 12(3), pages 1-18, February.
    7. Manolis, E.N. & Zagas, T.D. & Karetsos, G.K. & Poravou, C.A., 2019. "Ecological restrictions in forest biomass extraction for a sustainable renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 290-297.
    8. Mariana Abreu & Alberto Reis & Patrícia Moura & Ana Luisa Fernando & António Luís & Lídia Quental & Pedro Patinha & Francisco Gírio, 2020. "Evaluation of the Potential of Biomass to Energy in Portugal—Conclusions from the CONVERTE Project," Energies, MDPI, vol. 13(4), pages 1-32, February.
    9. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    2. Chen, Yizhong & Lu, Hongwei & Li, Jing & Huang, Guohe & He, Li, 2016. "Regional planning of new-energy systems within multi-period and multi-option contexts: A case study of Fengtai, Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 356-372.
    3. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    4. Francisco J. Ruiz-Rodríguez & Jesús C. Hernández & Francisco Jurado, 2017. "Probabilistic Load-Flow Analysis of Biomass-Fuelled Gas Engines with Electrical Vehicles in Distribution Systems," Energies, MDPI, vol. 10(10), pages 1-23, October.
    5. Huang, Y. & Wang, Y.D. & Chen, Haisheng & Zhang, Xinjing & Mondol, J. & Shah, N. & Hewitt, N.J., 2017. "Performance analysis of biofuel fired trigeneration systems with energy storage for remote households," Applied Energy, Elsevier, vol. 186(P3), pages 530-538.
    6. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    7. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
    8. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    9. Cho, Seolhee & Kim, Jiyong, 2019. "Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops," Energy, Elsevier, vol. 185(C), pages 527-540.
    10. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    11. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    12. Zhu, Youjian & Yang, Wei & Fan, Jiyuan & Kan, Tao & Zhang, Wennan & Liu, Heng & Cheng, Wei & Yang, Haiping & Wu, Xuehong & Chen, Hanping, 2018. "Effect of sodium carboxymethyl cellulose addition on particulate matter emissions during biomass pellet combustion," Applied Energy, Elsevier, vol. 230(C), pages 925-934.
    13. Kudakasseril Kurian, Jiby & Raveendran Nair, Gopu & Hussain, Abid & Vijaya Raghavan, G.S., 2013. "Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 205-219.
    14. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    15. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    16. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    17. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Biomass combustion systems: A review on the physical and chemical properties of the ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 235-242.
    18. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
    19. Namkung, Hueon & Lee, Young-Joo & Park, Ju-Hyoung & Song, Gyu-Seob & Choi, Jong Won & Kim, Joeng-Geun & Park, Se-Joon & Park, Joo Chang & Kim, Hyung-Taek & Choi, Young-Chan, 2019. "Influence of herbaceous biomass ash pre-treated by alkali metal leaching on the agglomeration/sintering and corrosion behaviors," Energy, Elsevier, vol. 187(C).
    20. Rashiqa Abdul Salam & Khuram Pervez Amber & Naeem Iqbal Ratyal & Mehboob Alam & Naveed Akram & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2020. "An Overview on Energy and Development of Energy Integration in Major South Asian Countries: The Building Sector," Energies, MDPI, vol. 13(21), pages 1-37, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:373-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.