IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p862-d321341.html
   My bibliography  Save this article

Optimal Price Based Demand Response of HVAC Systems in Commercial Buildings Considering Peak Load Reduction

Author

Listed:
  • Ah-Yun Yoon

    (Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea)

  • Hyun-Koo Kang

    (Department of Electrical and Electronic Enginnering, Hannam University, 70 Hannam-ro, Daedeok-gu, Daejeon 34430, Korea)

  • Seung-II Moon

    (Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea)

Abstract

Electric utility companies (EUCs) play an intermediary role of retailers between wholesale market and end-users, maximizing their profits. Retail pricing can be well deployed with the support of EUCs to promote demand response (DR) programs for heating, ventilating, and air-conditioning (HVAC) systems in commercial buildings. This paper proposes a pricing strategy to help EUCs and building operators achieve an optimal DR of price-elastic HVAC systems, considering peak load reduction. The proposed strategy is implemented by adopting a bi-level decision model. The nonlinear thermal response of an experimental building room is modeled using piecewise linear equations, which helps convert the bi-level model to the single-level model. The pricing strategy is implemented considering a time-of-use (TOU) pricing scheme, leading to low price volatility. Case studies are conducted for two types of load curves and the results demonstrate that the proposed strategy helps EUC promote the price-based DR of the commercial buildings for conventional load curves. However, EUC cannot reduce the peak load on duck curve caused by the large introduction of photovoltaic generators, even with price-sensitive HVAC systems in commercial building. This will be addressed in future studies by inducing DR participation of HVAC systems in residential buildings.

Suggested Citation

  • Ah-Yun Yoon & Hyun-Koo Kang & Seung-II Moon, 2020. "Optimal Price Based Demand Response of HVAC Systems in Commercial Buildings Considering Peak Load Reduction," Energies, MDPI, vol. 13(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:862-:d:321341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mu-Gu Jeong & Seung-Il Moon & Pyeong-Ik Hwang, 2016. "Indirect Load Control for Energy Storage Systems Using Incentive Pricing under Time-of-Use Tariff," Energies, MDPI, vol. 9(7), pages 1-20, July.
    2. Kim, Youngjin & Norford, Leslie K., 2017. "Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation," Applied Energy, Elsevier, vol. 193(C), pages 308-324.
    3. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    4. Hu, Zheng & Kim, Jin-ho & Wang, Jianhui & Byrne, John, 2015. "Review of dynamic pricing programs in the U.S. and Europe: Status quo and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 743-751.
    5. Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
    6. Zhang, Chunyu & Wang, Qi & Wang, Jianhui & Korpås, Magnus & Khodayar, Mohammad E., 2016. "Strategy-making for a proactive distribution company in the real-time market with demand response," Applied Energy, Elsevier, vol. 181(C), pages 540-548.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zishan Guo & Zhenya Ji & Qi Wang, 2020. "Blockchain-Enabled Demand Response Scheme with Individualized Incentive Pricing Mode," Energies, MDPI, vol. 13(19), pages 1-17, October.
    2. Davide Deltetto & Davide Coraci & Giuseppe Pinto & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings," Energies, MDPI, vol. 14(10), pages 1-25, May.
    3. Anna Fensel & Juan Miguel Gómez Berbís, 2021. "Energy Efficiency in Smart Homes and Smart Grids," Energies, MDPI, vol. 14(8), pages 1-2, April.
    4. Aneta Sapińska-Śliwa & Tomasz Sliwa & Kazimierz Twardowski & Krzysztof Szymski & Andrzej Gonet & Paweł Żuk, 2020. "Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers," Energies, MDPI, vol. 13(14), pages 1-20, July.
    5. Tamás Kis & András Kovács & Csaba Mészáros, 2021. "On Optimistic and Pessimistic Bilevel Optimization Models for Demand Response Management," Energies, MDPI, vol. 14(8), pages 1-22, April.
    6. Ghasem Ansari & Reza Keypour, 2023. "Optimizing the Performance of Commercial Demand Response Aggregator Using the Risk-Averse Function of Information-Gap Decision Theory," Sustainability, MDPI, vol. 15(7), pages 1-31, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chmielewski, Adrian & Gumiński, Robert & Mączak, Jędrzej & Radkowski, Stanisław & Szulim, Przemysław, 2016. "Aspects of balanced development of RES and distributed micro-cogeneration use in Poland: Case study of a µCHP with Stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 930-952.
    2. Cortés-Arcos, Tomás & Bernal-Agustín, José L. & Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Contreras, Javier, 2017. "Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology," Energy, Elsevier, vol. 138(C), pages 19-31.
    3. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.
    4. Ghasem Ansari & Reza Keypour, 2023. "Optimizing the Performance of Commercial Demand Response Aggregator Using the Risk-Averse Function of Information-Gap Decision Theory," Sustainability, MDPI, vol. 15(7), pages 1-31, April.
    5. Yoon, Ah-Yun & Kim, Young-Jin & Zakula, Tea & Moon, Seung-Ill, 2020. "Retail electricity pricing via online-learning of data-driven demand response of HVAC systems," Applied Energy, Elsevier, vol. 265(C).
    6. Debnath, Kumar Biswajit & Jenkins, David P. & Patidar, Sandhya & Peacock, Andrew D., 2024. "Remote work might unlock solar PV's potential of cracking the ‘Duck Curve’," Applied Energy, Elsevier, vol. 367(C).
    7. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.
    8. Chen, Houhe & Wang, Di & Zhang, Rufeng & Jiang, Tao & Li, Xue, 2022. "Optimal participation of ADN in energy and reserve markets considering TSO-DSO interface and DERs uncertainties," Applied Energy, Elsevier, vol. 308(C).
    9. Li, Xiao Hui & Hong, Seung Ho, 2014. "User-expected price-based demand response algorithm for a home-to-grid system," Energy, Elsevier, vol. 64(C), pages 437-449.
    10. Robert Cruickshank & Gregor Henze & Rajagopalan Balaji & Bri-Mathias Hodge & Anthony Florita, 2019. "Quantifying the Opportunity Limits of Automatic Residential Electric Load Shaping," Energies, MDPI, vol. 12(17), pages 1-19, August.
    11. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    12. Blum, D.H. & Arendt, K. & Rivalin, L. & Piette, M.A. & Wetter, M. & Veje, C.T., 2019. "Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems," Applied Energy, Elsevier, vol. 236(C), pages 410-425.
    13. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    14. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    15. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Yi Hao & Zhigang Huang & Shiqian Ma & Jiakai Huang & Jiahao Chen & Bing Sun, 2023. "Evaluation Method of the Incremental Power Supply Capability Brought by Distributed Generation," Energies, MDPI, vol. 16(16), pages 1-17, August.
    17. Kanato Tamashiro & Talal Alharbi & Alexey Mikhaylov & Ashraf M. Hemeida & Narayanan Krishnan & Mohammed Elsayed Lotfy & Tomonobu Senjyu, 2021. "Investigation of Home Energy Management with Advanced Direct Load Control and Optimal Scheduling of Controllable Loads," Energies, MDPI, vol. 14(21), pages 1-14, November.
    18. Junchao Cheng & Yongyi Huang & Hongjing He & Abdul Matin Ibrahimi & Tomonobu Senjyu, 2023. "Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons," Energies, MDPI, vol. 16(10), pages 1-21, May.
    19. Chen, Jiahao & Sun, Bing & Li, Yunfei & Jing, Ruipeng & Zeng, Yuan & Li, Minghao, 2022. "Credible capacity calculation method of distributed generation based on equal power supply reliability criterion," Renewable Energy, Elsevier, vol. 201(P1), pages 534-547.
    20. Zhang, Yunchao & Islam, Md Monirul & Sun, Zeyi & Yang, Sijia & Dagli, Cihan & Xiong, Haoyi, 2018. "Optimal sizing and planning of onsite generation system for manufacturing in Critical Peaking Pricing demand response program," International Journal of Production Economics, Elsevier, vol. 206(C), pages 261-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:862-:d:321341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.