IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v206y2018icp261-267.html
   My bibliography  Save this article

Optimal sizing and planning of onsite generation system for manufacturing in Critical Peaking Pricing demand response program

Author

Listed:
  • Zhang, Yunchao
  • Islam, Md Monirul
  • Sun, Zeyi
  • Yang, Sijia
  • Dagli, Cihan
  • Xiong, Haoyi

Abstract

Onsite electricity generation system in manufacturing has been traditionally considered an effective backup energy source to support the manufacturing operations when external power is not available due to natural disasters and/or power blackouts. Recently, with the increasing concerns of climate change and environmental protection, the contribution of using onsite generation system (OGS) to the manufacturing end use customers when they enroll in specific electricity demand response programs has also been gradually recognized. In this paper, we investigate the cost-effective OGS sizing problem for manufacturing practitioners when participating in Critical Peaking Pricing (CPP) demand response program. A Mixed Integer Non-Linear Programming (MINLP) formulation is proposed to identify the optimal size and utilization strategy of the OGS, as well as the corresponding production plan of the manufacturing system to minimize the overall energy related cost. Linearization strategy and metaheuristic algorithm are discussed for solving the proposed formulation with a reasonable computational cost and a good solution quality. A case study based on a real auto component manufacturing system and an existing CPP program is implemented to examine the effects of the proposed model. The results show that when utilizing the OGS appropriately sized, the total electricity related cost of the manufacturing system can be significantly reduced when participating in the CPP program.

Suggested Citation

  • Zhang, Yunchao & Islam, Md Monirul & Sun, Zeyi & Yang, Sijia & Dagli, Cihan & Xiong, Haoyi, 2018. "Optimal sizing and planning of onsite generation system for manufacturing in Critical Peaking Pricing demand response program," International Journal of Production Economics, Elsevier, vol. 206(C), pages 261-267.
  • Handle: RePEc:eee:proeco:v:206:y:2018:i:c:p:261-267
    DOI: 10.1016/j.ijpe.2018.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527318304249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2018.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    2. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Understanding energy consumption behavior for future demand response strategy development," Energy, Elsevier, vol. 46(1), pages 94-100.
    3. Faria, P. & Vale, Z., 2011. "Demand response in electrical energy supply: An optimal real time pricing approach," Energy, Elsevier, vol. 36(8), pages 5374-5384.
    4. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    5. Yousefi, Shaghayegh & Moghaddam, Mohsen Parsa & Majd, Vahid Johari, 2011. "Optimal real time pricing in an agent-based retail market using a comprehensive demand response model," Energy, Elsevier, vol. 36(9), pages 5716-5727.
    6. Greening, Lorna A., 2010. "Demand response resources: Who is responsible for implementation in a deregulated market?," Energy, Elsevier, vol. 35(4), pages 1518-1525.
    7. Hawkes, A.D. & Leach, M.A., 2007. "Cost-effective operating strategy for residential micro-combined heat and power," Energy, Elsevier, vol. 32(5), pages 711-723.
    8. Mahdi Hamzeei & James Luedtke, 2014. "Linearization-based algorithms for mixed-integer nonlinear programs with convex continuous relaxation," Journal of Global Optimization, Springer, vol. 59(2), pages 343-365, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham, An & Jin, Tongdan & Novoa, Clara & Qin, Jin, 2019. "A multi-site production and microgrid planning model for net-zero energy operations," International Journal of Production Economics, Elsevier, vol. 218(C), pages 260-274.
    2. Markus Hilbert & Andreas Dellnitz & Andreas Kleine, 2023. "Production planning under RTP, TOU and PPA considering a redox flow battery storage system," Annals of Operations Research, Springer, vol. 328(2), pages 1409-1436, September.
    3. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiao Hui & Hong, Seung Ho, 2014. "User-expected price-based demand response algorithm for a home-to-grid system," Energy, Elsevier, vol. 64(C), pages 437-449.
    2. Hong, Seung Ho & Kim, Se Hwan & Kim, Gi Myung & Kim, Hyung Lae, 2014. "Experimental evaluation of BZ-GW (BACnet-ZigBee smart grid gateway) for demand response in buildings," Energy, Elsevier, vol. 65(C), pages 62-70.
    3. Hong, Seung Ho & Yu, Mengmeng & Huang, Xuefei, 2015. "A real-time demand response algorithm for heterogeneous devices in buildings and homes," Energy, Elsevier, vol. 80(C), pages 123-132.
    4. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    5. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    6. Li, Lanlan & Gong, Chengzhu & Wang, Deyun & Zhu, Kejun, 2013. "Multi-agent simulation of the time-of-use pricing policy in an urban natural gas pipeline network: A case study of Zhengzhou," Energy, Elsevier, vol. 52(C), pages 37-43.
    7. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    8. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.
    9. Park, S.C. & Jin, Y.G. & Song, H.Y. & Yoon, Y.T., 2015. "Designing a critical peak pricing scheme for the profit maximization objective considering price responsiveness of customers," Energy, Elsevier, vol. 83(C), pages 521-531.
    10. Fotouhi Ghazvini, Mohammad Ali & Faria, Pedro & Ramos, Sergio & Morais, Hugo & Vale, Zita, 2015. "Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market," Energy, Elsevier, vol. 82(C), pages 786-799.
    11. Kharrati, Saeed & Kazemi, Mostafa & Ehsan, Mehdi, 2016. "Equilibria in the competitive retail electricity market considering uncertainty and risk management," Energy, Elsevier, vol. 106(C), pages 315-328.
    12. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    13. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.
    14. Alagoz, B. Baykant & Kaygusuz, Asim & Akcin, Murat & Alagoz, Serkan, 2013. "A closed-loop energy price controlling method for real-time energy balancing in a smart grid energy market," Energy, Elsevier, vol. 59(C), pages 95-104.
    15. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    16. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    17. Faber, Isaac & Lane, William & Pak, Wayne & Prakel, Mary & Rocha, Cheyne & Farr, John V., 2014. "Micro-energy markets: The role of a consumer preference pricing strategy on microgrid energy investment," Energy, Elsevier, vol. 74(C), pages 567-575.
    18. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    19. Soares, Ana & Antunes, Carlos Henggeler & Oliveira, Carlos & Gomes, Álvaro, 2014. "A multi-objective genetic approach to domestic load scheduling in an energy management system," Energy, Elsevier, vol. 77(C), pages 144-152.
    20. Fletcher, James & Malalasekera, Weeratunge, 2016. "Development of a user-friendly, low-cost home energy monitoring and recording system," Energy, Elsevier, vol. 111(C), pages 32-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:206:y:2018:i:c:p:261-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.