IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p859-d321267.html
   My bibliography  Save this article

Energy Efficiency of a Solar Wall with Transparent Insulation in Polish Climatic Conditions

Author

Listed:
  • Jadwiga Świrska-Perkowska

    (Department of Physics of Materials, Faculty of Civil Engineering and Architecture, Opole University of Technology, Katowicka 48, 45-061 Opole, Poland)

  • Andrzej Kucharczyk

    (Department of Physics of Materials, Faculty of Civil Engineering and Architecture, Opole University of Technology, Katowicka 48, 45-061 Opole, Poland)

  • Jerzy Wyrwał

    (Department of Physics of Materials, Faculty of Civil Engineering and Architecture, Opole University of Technology, Katowicka 48, 45-061 Opole, Poland)

Abstract

A numerical model of a solar wall (SW) with transparent insulation (TI) is proposed in this article. The model is based on the finite-difference method and thermal conductivity equation, with a heat source term for the absorber. Using this model, the energy efficiency of a solar wall with transparent insulation (SW-TI) with honeycomb insulation made of modified cellulose acetate was analyzed in the case of different climatic conditions prevailing in Poland, different orientations of the envelope, and different insulation thicknesses. Simulations were carried out throughout the whole heating period. Monthly energy balances and temperature distributions for the analyzed envelopes at individual moments of the heating period are the basic results of the simulations. It was found that the use of 108 and 88 mm thick insulation was the most recommended in the considered temperate climate. Placing transparent insulation on a wall with an eastern or western orientation caused the annual heat balance of the envelope to decrease by 24–31% in relation to the value of this balance in the case of a southern orientation. The monthly heat balances obtained using the proposed model give results consistent with the method of calculating heat gains for opaque building envelopes with transparent insulation included in the PN-EN ISO 13790:2008 standard.

Suggested Citation

  • Jadwiga Świrska-Perkowska & Andrzej Kucharczyk & Jerzy Wyrwał, 2020. "Energy Efficiency of a Solar Wall with Transparent Insulation in Polish Climatic Conditions," Energies, MDPI, vol. 13(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:859-:d:321267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaushika, N. D. & Sumathy, K., 2003. "Solar transparent insulation materials: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(4), pages 317-351, August.
    2. Miroslav Čekon & Richard Slávik, 2017. "A Non-Ventilated Solar Façade Concept Based on Selective and Transparent Insulation Material Integration: An Experimental Study," Energies, MDPI, vol. 10(6), pages 1-21, June.
    3. Yang, Hongxing & Zhu, Zuojin & Burnett, John, 2000. "Simulation of the behaviour of transparent insulation materials in buildings in northern China," Applied Energy, Elsevier, vol. 67(3), pages 293-306, November.
    4. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    5. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jadwiga Świrska-Perkowska & Zbigniew Perkowski, 2021. "Selection of Parameters for Accumulating Layer of Solar Walls with Transparent Insulation," Energies, MDPI, vol. 14(5), pages 1-55, February.
    2. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.
    3. Peter Steininger & Matthias Gaderer & Belal Dawoud, 2021. "Assessment of the Annual Transmission Heat Loss Reduction of a Refurbished Existing Building with an Advanced Solar Selective Thermal Insulation System," Sustainability, MDPI, vol. 13(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jadwiga Świrska-Perkowska & Zbigniew Perkowski, 2021. "Selection of Parameters for Accumulating Layer of Solar Walls with Transparent Insulation," Energies, MDPI, vol. 14(5), pages 1-55, February.
    2. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    3. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Lyu, Yuan-Li & Chow, Tin-Tai & Wang, Jin-Liang, 2018. "Numerical prediction of thermal performance of liquid-flow window in different climates with anti-freeze," Energy, Elsevier, vol. 157(C), pages 412-423.
    5. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    6. Yang, Xinpeng & Li, Dong & Yang, Ruitong & Ma, Yuxin & Duan, Yanjiao & Zhang, Chengjun & Hu, Wanyu & Arıcı, Müslüm, 2023. "Parameter global optimization and climatic adaptability analysis of PCM glazed system for long-term application," Renewable Energy, Elsevier, vol. 217(C).
    7. Karel Struhala & Miroslav Čekon & Richard Slávik, 2018. "Life Cycle Assessment of Solar Façade Concepts Based on Transparent Insulation Materials," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    8. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    9. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    10. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    11. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    12. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    13. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    14. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    15. Wang, Pengcheng & Liu, Zhongbing & Zhang, Ling & Wang, Zhe & Fan, Jianhua, 2023. "Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions," Applied Energy, Elsevier, vol. 341(C).
    16. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    17. Davide Del Curto & Valentina Cinieri, 2020. "Aerogel-Based Plasters and Energy Efficiency of Historic Buildings. Literature Review and Guidelines for Manufacturing Specimens Destined for Thermal Tests," Sustainability, MDPI, vol. 12(22), pages 1-23, November.
    18. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    19. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.
    20. Barber, Kyle A. & Krarti, Moncef, 2022. "A review of optimization based tools for design and control of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:859-:d:321267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.