IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3065-d256089.html
   My bibliography  Save this article

The Energy Mosaic Austria—A Nationwide Energy and Greenhouse Gas Inventory on Municipal Level as Action Field of Integrated Spatial and Energy Planning

Author

Listed:
  • Lore Abart-Heriszt

    (Institute of Spatial Planning, Environmental Planning and Land Rearrangement, University of Natural Resources and Life Sciences, 1190 Vienna, Austria)

  • Susanna Erker

    (Institute of Spatial Planning, Environmental Planning and Land Rearrangement, University of Natural Resources and Life Sciences, 1190 Vienna, Austria)

  • Gernot Stoeglehner

    (Institute of Spatial Planning, Environmental Planning and Land Rearrangement, University of Natural Resources and Life Sciences, 1190 Vienna, Austria)

Abstract

While climate agreements are made on an international level, the measures for mitigating climate change must be executed on a local scale. Designing energy and climate related strategies on the level of municipalities has been hampered by the lack of comprehensive data on the current status of energy consumption and associated greenhouse gas emissions on the local level. A novel approach based on the so-called spatial turn in energy and climate policies has now been established in the form of the Energy Mosaic Austria, which represents a comprehensive energy and greenhouse gas inventory for all Austrian municipalities considering different purposes of energy consumption and different energy sources. The inventory is based on the linkage of bottom-up and top-down operations, utilizing data on land use and mobility structures on the municipal level. The outcomes provide a detailed insight into the pattern of energy consumption and associated greenhouse gas emissions that are resolved on the municipal level. A spatially differentiated analysis of the inventory yields dependencies of the energy consumption and the greenhouse gas emissions on spatial structures particularly due to the fractions of different types of land use including mobility. With the energy mosaic Austria, local policy makers are given an inventory with unprecedented spatial and contentual resolution, which is fully coherent with more coarse-grained provincial and nationwide compilations of energy consumption and greenhouse gas emissions and elucidates the scope of action in energy and climate policy from the municipal to the nationwide level.

Suggested Citation

  • Lore Abart-Heriszt & Susanna Erker & Gernot Stoeglehner, 2019. "The Energy Mosaic Austria—A Nationwide Energy and Greenhouse Gas Inventory on Municipal Level as Action Field of Integrated Spatial and Energy Planning," Energies, MDPI, vol. 12(16), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3065-:d:256089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parshall, Lily & Gurney, Kevin & Hammer, Stephen A. & Mendoza, Daniel & Zhou, Yuyu & Geethakumar, Sarath, 2010. "Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States," Energy Policy, Elsevier, vol. 38(9), pages 4765-4782, September.
    2. Martin I. Hoffert & Ken Caldeira & Atul K. Jain & Erik F. Haites & L. D. Danny Harvey & Seth D. Potter & Michael E. Schlesinger & Stephen H. Schneider & Robert G. Watts & Tom M. L. Wigley & Donald J. , 1998. "Energy implications of future stabilization of atmospheric CO2 content," Nature, Nature, vol. 395(6705), pages 881-884, October.
    3. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
    4. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    5. Helm, Dieter, 2002. "Energy policy: security of supply, sustainability and competition," Energy Policy, Elsevier, vol. 30(3), pages 173-184, February.
    6. Pfenninger, Stefan & Hirth, Lion & Schlecht, Ingmar & Schmid, Eva & Wiese, Frauke & Brown, Tom & Davis, Chris & Gidden, Matthew & Heinrichs, Heidi & Heuberger, Clara & Hilpert, Simon & Krien, Uwe & Ma, 2018. "Opening the black box of energy modelling: Strategies and lessons learned," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19, pages 63-71.
    7. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    8. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    9. van Beeck, N.M.J.P., 1999. "Classification of Energy Models," Other publications TiSEM 6f2cbb5e-2d53-4be6-a4f9-9, Tilburg University, School of Economics and Management.
    10. van Beeck, N.M.J.P., 1999. "Classification of Energy Models," Research Memorandum 777, Tilburg University, School of Economics and Management.
    11. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    12. DeCarolis, Joseph F. & Hunter, Kevin & Sreepathi, Sarat, 2012. "The case for repeatable analysis with energy economy optimization models," Energy Economics, Elsevier, vol. 34(6), pages 1845-1853.
    13. Sinwoo Lee & Dong-Woon Noh & Dong-hyun Oh, 2018. "Characterizing the Difference between Indirect and Direct CO 2 Emissions: Evidence from Korean Manufacturing Industries, 2004–2010," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Małgorzata Blaszke & Maciej Nowak & Przemysław Śleszyński & Bartosz Mickiewicz, 2021. "Investments in Renewable Energy Sources in the Concepts of Local Spatial Policy: The Case of Poland," Energies, MDPI, vol. 14(23), pages 1-18, November.
    2. Gernot Stoeglehner, 2020. "Integrated spatial and energy planning: a means to reach sustainable development goals," Evolutionary and Institutional Economics Review, Springer, vol. 17(2), pages 473-486, July.
    3. Stoeglehner, G. & Abart-Heriszt, L., 2022. "Integrated spatial and energy planning in Styria – A role model for local and regional energy transition and climate protection policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Juan Carlos Osorio-Aravena & Marina Frolova & Julio Terrados-Cepeda & Emilio Muñoz-Cerón, 2020. "Spatial Energy Planning: A Review," Energies, MDPI, vol. 13(20), pages 1-14, October.
    5. Luan Santos & Karl Steininger & Marcelle Candido Cordeiro & Johanna Vogel, 2022. "Current Status and Future Perspectives of Carbon Pricing Research in Austria," Sustainability, MDPI, vol. 14(15), pages 1-28, August.
    6. Martin Hammerschmid & Johannes Konrad & Andreas Werner & Tom Popov & Stefan Müller, 2022. "ENECO 2 Calc—A Modeling Tool for the Investigation of Energy Transition Paths toward Climate Neutrality within Municipalities," Energies, MDPI, vol. 15(19), pages 1-32, September.
    7. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    8. Peter Lichtenwoehrer & Lore Abart-Heriszt & Florian Kretschmer & Franz Suppan & Gernot Stoeglehner & Georg Neugebauer, 2021. "Evaluating Spatial Interdependencies of Sector Coupling Using Spatiotemporal Modelling," Energies, MDPI, vol. 14(5), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    2. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    4. Martin Hammerschmid & Johannes Konrad & Andreas Werner & Tom Popov & Stefan Müller, 2022. "ENECO 2 Calc—A Modeling Tool for the Investigation of Energy Transition Paths toward Climate Neutrality within Municipalities," Energies, MDPI, vol. 15(19), pages 1-32, September.
    5. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    6. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Vaccaro, Roberto & Rocco, Matteo V., 2021. "Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy," Energy, Elsevier, vol. 220(C).
    10. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Fabian Scheller & Frauke Wiese & Jann Michael Weinand & Dominik Franjo Dominkovi'c & Russell McKenna, 2021. "An expert survey to assess the current status and future challenges of energy system analysis," Papers 2106.15518, arXiv.org.
    13. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    14. Graeme S. Hawker & Keith R. W. Bell, 2020. "Making energy system models useful: Good practice in the modelling of multiple vectors," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    15. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    16. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.
    17. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    18. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
    20. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Variable renewable energies and storage development in long term energy modelling tools," Post-Print hal-01279467, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3065-:d:256089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.