IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p800-d319763.html
   My bibliography  Save this article

Temporal Aspects in Emission Accounting—Case Study of Agriculture Sector

Author

Listed:
  • Lelde Timma

    (Department of Agroecology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark)

  • Elina Dace

    (Institute of Microbiology and Biotechnology, University of Latvia, 1 Jelgavas Street, LV1004 Riga, Latvia
    Research Department, Riga Stradins University, 16 Dzirciema Street, LV1007 Riga, Latvia)

  • Marie Trydeman Knudsen

    (Department of Agroecology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark)

Abstract

Complex relations link climate change and agriculture. The vast majority of the studies that are looking into the quantification of the climate impacts use the Global Warming Potential (GWP) for a 100-year time horizon (GWP100) as the default metrics. The GWP, including the Bern Carbon Cycle Model (BCCM), was proposed as an alternative method to take into consideration the amount and time of emission, and the fraction of emissions that remained in the atmosphere from previous emission periods. Thus, this study aims to compare two methods for GHG emission accounting from the agriculture sector: the constant GWP100 and the time dynamic GWP100 horizon obtained by using the BCCM to find whether the obtained results will lead to similar or contradicting conclusions. Also, the effect of global temperature potential (GTP) of the studied system is summarized. The results show that the application of the BCCM would facilitate finding more efficient mitigation options for various pollutants and analyze various parts of the climate response system at a specific time in the future (amount of particular pollutants, temperature change potential). Moreover, analyze different solutions for reaching the emission mitigation targets at regional, national, or global levels.

Suggested Citation

  • Lelde Timma & Elina Dace & Marie Trydeman Knudsen, 2020. "Temporal Aspects in Emission Accounting—Case Study of Agriculture Sector," Energies, MDPI, vol. 13(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:800-:d:319763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/800/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/800/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boucher, O. & Reddy, M.S., 2008. "Climate trade-off between black carbon and carbon dioxide emissions," Energy Policy, Elsevier, vol. 36(1), pages 193-200, January.
    2. Thomas Fellmann & Ignacio Perez Dominguez & Heinz Peter Witzke & Torbjorn Jansson & Diti Oudendag & Alexander Gocht & David Verhoog, 2012. "Agricultural GHG emissions in the EU: an exploratory economic assessment of mitigation policy options," JRC Research Reports JRC69817, Joint Research Centre.
    3. Katsumasa Tanaka & Daniel Johansson & Brian O’Neill & Jan Fuglestvedt, 2013. "Emission metrics under the 2 °C climate stabilization target," Climatic Change, Springer, vol. 117(4), pages 933-941, April.
    4. Cherubini, Francesco & Fuglestvedt, Jan & Gasser, Thomas & Reisinger, Andy & Cavalett, Otávio & Huijbregts, Mark A.J. & Johansson, Daniel J.A. & Jørgensen, Susanne V. & Raugei, Marco & Schivley, Greg , 2016. "Bridging the gap between impact assessment methods and climate science," Environmental Science & Policy, Elsevier, vol. 64(C), pages 129-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lelde Timma & Elina Dace & Troels Kristensen & Marie Trydeman Knudsen, 2020. "Dynamic Sustainability Assessment Tool: Case Study of Green Biorefineries in Danish Agriculture," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    2. Salvatore Camposeo & Gaetano Alessandro Vivaldi & Giovanni Russo & Francesca Maria Melucci, 2022. "Intensification in Olive Growing Reduces Global Warming Potential under Both Integrated and Organic Farming," Sustainability, MDPI, vol. 14(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morgan R. Edwards & Jessika E. Trancik, 2022. "Consequences of equivalency metric design for energy transitions and climate change," Climatic Change, Springer, vol. 175(1), pages 1-27, November.
    2. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    3. Dharik S. Mallapragada & Bryan K. Mignone, 2020. "A theoretical basis for the equivalence between physical and economic climate metrics and implications for the choice of Global Warming Potential time horizon," Climatic Change, Springer, vol. 158(2), pages 107-124, January.
    4. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    5. Jessica Strefler & Gunnar Luderer & Tino Aboumahboub & Elmar Kriegler, 2014. "Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment," Climatic Change, Springer, vol. 125(3), pages 319-331, August.
    6. Richard Millar & Alexander Otto & Piers Forster & Jason Lowe & William Ingram & Myles Allen, 2015. "Model structure in observational constraints on transient climate response," Climatic Change, Springer, vol. 131(2), pages 199-211, July.
    7. Fellmann, Thomas & Dominguez, Ignacio Perez & Witzke, Heinz Peter & Oudendag, Diti, 2012. "Mitigating GHG emissions from EU agriculture– what difference does the policy make?," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126815, International Association of Agricultural Economists.
    8. Witzke, Peter & Van Doorslaer, Benjamin & Huck, Ingo & Salputra, Guna & Fellmann, Thomas & Drabik, Dusan & Weiss, Franz & Leip, Adrian, 2014. "Assessing the importance of technological non-CO2 GHG emission mitigation options in EU agriculture with the CAPRI model," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182676, European Association of Agricultural Economists.
    9. Jussi Lintunen & Lauri Vilmi, 2021. "Optimal Emission Prices Over the Business Cycles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 135-167, September.
    10. Odette Deuber & Gunnar Luderer & Robert Sausen, 2014. "CO 2 equivalences for short-lived climate forcers," Climatic Change, Springer, vol. 122(4), pages 651-664, February.
    11. Witzke, Heinz-Peter & Fellmann, Thomas & Van Doorslaer, Benjamin & Huck, Ingo & Weiss, Franz & Salputra, Guna & Jansson, Torbjorn & Drabik, Dusan & Leip, Adrian, 2015. "Integrating the Agricultural Sector into the New EU Climate Policy Framework for 2030: A Scenario Analysis to Highlight Potential Impacts and Challenges," 2015 Conference, August 9-14, 2015, Milan, Italy 211897, International Association of Agricultural Economists.
    12. Nariê Rinke Dias de Souza & Bruno Colling Klein & Mateus Ferreira Chagas & Otavio Cavalett & Antonio Bonomi, 2021. "Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    13. Lelde Timma & Elina Dace & Troels Kristensen & Marie Trydeman Knudsen, 2020. "Dynamic Sustainability Assessment Tool: Case Study of Green Biorefineries in Danish Agriculture," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    14. Weiwei Xiong & Katsumasa Tanaka & Philippe Ciais & Daniel J. A. Johansson & Mariliis Lehtveer, 2022. "emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves," Papers 2212.12060, arXiv.org.
    15. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    16. Augusto Mussi Alvim & Eduardo Rodrigues Sanguinet, 2021. "Climate Change Policies and the Carbon Tax Effect on Meat and Dairy Industries in Brazil," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    17. Moura, Maria Cecilia P. & Branco, David A. Castelo & Peters, Glen P. & Szklo, Alexandre Salem & Schaeffer, Roberto, 2013. "How the choice of multi-gas equivalency metrics affects mitigation options: The case of CO2 capture in a Brazilian coal-fired power plant," Energy Policy, Elsevier, vol. 61(C), pages 1357-1366.
    18. José-Luis Cruz & Esteban Rossi-Hansberg, 2024. "The Economic Geography of Global Warming," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(2), pages 899-939.
    19. Johanna Olofsson, 2021. "Time-Dependent Climate Impact of Utilizing Residual Biomass for Biofuels—The Combined Influence of Modelling Choices and Climate Impact Metrics," Energies, MDPI, vol. 14(14), pages 1-17, July.
    20. Himics, Mihaly & Fellmann, Thomas & Barreiro-Hurlé, Jesús & Witzke, Heinz-Peter & Pérez Domínguez, Ignacio & Jansson, Torbjörn & Weiss, Franz, 2018. "Does the current trade liberalization agenda contribute to greenhouse gas emission mitigation in agriculture?," Food Policy, Elsevier, vol. 76(C), pages 120-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:800-:d:319763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.