IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p772-d318852.html
   My bibliography  Save this article

Numerical Investigations of a Counter-Current Moving Bed Reactor for Thermochemical Energy Storage at High Temperatures

Author

Listed:
  • Nicole Carina Preisner

    (Institute of Engineering Thermodynamics, DLR, Linder Höhe, 51147 Köln, Germany)

  • Inga Bürger

    (Institute of Engineering Thermodynamics, DLR, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany)

  • Michael Wokon

    (Institute of Engineering Thermodynamics, DLR, Linder Höhe, 51147 Köln, Germany)

  • Marc Linder

    (Institute of Engineering Thermodynamics, DLR, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany)

Abstract

High temperature storage is a key factor for compensating the fluctuating energy supply of solar thermal power plants, and thus enables renewable base load power. In thermochemical energy storage, the thermal energy is stored as the reaction enthalpy of a chemically reversible gas-solid reaction. Metal oxides are suitable candidates for thermochemical energy storage for solar thermal power plants, due to their high reaction temperatures and use of oxygen as a gaseous reaction partner. However, it is crucial to extract both sensible and thermochemical energy at these elevated temperatures to boost the overall system efficiency. Therefore, this study focuses on the combined extraction of thermochemical and sensible energy from a metal oxide and its effects on thermal power and energy density during discharging. A counter-current moving bed, based on manganese-iron-oxide, was investigated with a transient, one-dimensional model using the finite element method. A nearly isothermal temperature distribution along the bed height was formed, as long as the gas flow did not exceed a tipping point. A maximal energy density of 933 kJ/kg was achieved, when ( Mn , Fe ) 3 O 4 was oxidized and cooled from 1050 ° C to 300 ° C . However, reaction kinetics can limit the thermal power and energy density. To avoid this drawback, a moving bed reactor based on the investigated manganese-iron oxide should combine direct and indirect heat transfer to overcome kinetic limitations.

Suggested Citation

  • Nicole Carina Preisner & Inga Bürger & Michael Wokon & Marc Linder, 2020. "Numerical Investigations of a Counter-Current Moving Bed Reactor for Thermochemical Energy Storage at High Temperatures," Energies, MDPI, vol. 13(3), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:772-:d:318852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. André, Laurie & Abanades, Stéphane & Flamant, Gilles, 2016. "Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 703-715.
    2. Zeng, Liang & Tong, Andrew & Kathe, Mandar & Bayham, Samuel & Fan, Liang-Shih, 2015. "Iron oxide looping for natural gas conversion in a countercurrent moving bed reactor," Applied Energy, Elsevier, vol. 157(C), pages 338-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Wei & Korba, David & Randhir, Kelvin & Petrasch, Joerg & Klausner, James & AuYeung, Nick & Li, Like, 2022. "Thermochemical reduction modeling in a high-temperature moving-bed reactor for energy storage: 1D model," Applied Energy, Elsevier, vol. 306(PB).
    2. Michela Lanchi & Luca Turchetti & Salvatore Sau & Raffaele Liberatore & Stefano Cerbelli & Maria Anna Murmura & Maria Cristina Annesini, 2020. "A Discussion of Possible Approaches to the Integration of Thermochemical Storage Systems in Concentrating Solar Power Plants," Energies, MDPI, vol. 13(18), pages 1-26, September.
    3. Gan, Di & Zhu, Peiwang & Xu, Haoran & Xie, Xiangyu & Chai, Fengyuan & Gong, Jueyuan & Li, Jiasong & Xiao, Gang, 2023. "Experimental and simulation study of Mn–Fe particles in a controllable-flow particle solar receiver for high-temperature thermochemical energy storage," Energy, Elsevier, vol. 282(C).
    4. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review of Thermochemical Technologies for Water and Energy Integration Systems: Energy Storage and Recovery," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    5. Tescari, Stefania & Neumann, Nicole Carina & Sundarraj, Pradeepkumar & Moumin, Gkiokchan & Rincon Duarte, Juan Pablo & Linder, Marc & Roeb, Martin, 2022. "Storing solar energy in continuously moving redox particles – Experimental analysis of charging and discharging reactors," Applied Energy, Elsevier, vol. 308(C).
    6. Korba, David & Huang, Wei & Randhir, Kelvin & Petrasch, Joerg & Klausner, James & AuYeung, Nick & Li, Like, 2022. "A continuum model for heat and mass transfer in moving-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 313(C).
    7. Anti Kur & Jo Darkwa & John Calautit & Rabah Boukhanouf & Mark Worall, 2023. "Solid–Gas Thermochemical Energy Storage Materials and Reactors for Low to High-Temperature Applications: A Concise Review," Energies, MDPI, vol. 16(2), pages 1-35, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicole Carina Preisner & Marc Linder, 2020. "A Moving Bed Reactor for Thermochemical Energy Storage Based on Metal Oxides," Energies, MDPI, vol. 13(5), pages 1-20, March.
    2. Tescari, Stefania & Neumann, Nicole Carina & Sundarraj, Pradeepkumar & Moumin, Gkiokchan & Rincon Duarte, Juan Pablo & Linder, Marc & Roeb, Martin, 2022. "Storing solar energy in continuously moving redox particles – Experimental analysis of charging and discharging reactors," Applied Energy, Elsevier, vol. 308(C).
    3. Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
    4. Hofsink, Jordy & Singh, Abhishek K., 2024. "Sodium thermal electrochemical converter coupled with organic Rankine cycle and thermochemical heat storage for power-heat-power application," Renewable Energy, Elsevier, vol. 222(C).
    5. Feng, Yupeng & Hu, Xiannan & Li, Xuhan & Zhang, Man & Zhu, Shahong & Yang, Hairui, 2023. "Self-compensation and attenuation mechanisms of carbide slag in multicycle thermochemical heat storage," Renewable Energy, Elsevier, vol. 218(C).
    6. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    7. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    8. Xu, Y.X. & Yan, J. & Zhao, C.Y., 2022. "Investigation on application temperature zone and exergy loss regulation based on MgCO3/MgO thermochemical heat storage and release process," Energy, Elsevier, vol. 239(PC).
    9. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    10. Li, Caili & Li, Yingjie & Fang, Yi & Zhang, Chunxiao & Ren, Yu, 2024. "TiO2/MnFe2O4 co-modified alkaline papermaking waste for CaO-CaCO3 thermochemical energy storage," Applied Energy, Elsevier, vol. 362(C).
    11. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    12. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    13. Gravogl, Georg & Knoll, Christian & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Harasek, Michael & Hradil, Klaudia & Werner, Andreas & Weinberger, Peter & Müller, D, 2019. "Pressure effects on the carbonation of MeO (Me = Co, Mn, Pb, Zn) for thermochemical energy storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Andrés Carro & Ricardo Chacartegui & Carlos Tejada & Georgios Gravanis & Muhammad Eusha & Voutetakis Spyridon & Papadopoulou Simira & Carlos Ortiz, 2021. "FMEA and Risks Assessment for Thermochemical Energy Storage Systems Based on Carbonates," Energies, MDPI, vol. 14(19), pages 1-20, September.
    15. Gokon, Nobuyuki & Yawata, Takehiro & Bellan, Selvan & Kodama, Tatsuya & Cho, Hyun-Seok, 2019. "Thermochemical behavior of perovskite oxides based on LaxSr1-x(Mn, Fe, Co)O3-δ and BaySr1-yCoO3-δ redox system for thermochemical energy storage at high temperatures," Energy, Elsevier, vol. 171(C), pages 971-980.
    16. Stylianos Flegkas & Felix Birkelbach & Franz Winter & Hans Groenewold & Andreas Werner, 2019. "Profitability Analysis and Capital Cost Estimation of a Thermochemical Energy Storage System Utilizing Fluidized Bed Reactors and the Reaction System MgO/Mg(OH) 2," Energies, MDPI, vol. 12(24), pages 1-16, December.
    17. Flegkas, S. & Birkelbach, F. & Winter, F. & Freiberger, N. & Werner, A., 2018. "Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations," Energy, Elsevier, vol. 143(C), pages 615-623.
    18. Chen, Chen & Kong, Mingmin & Zhou, Shuiqing & Sepulveda, Abdon E. & Hong, Hui, 2020. "Energy storage efficiency optimization of methane reforming with CO2 reactors for solar thermochemical energy storage☆," Applied Energy, Elsevier, vol. 266(C).
    19. Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
    20. Carro, A. & Chacartegui, R. & Ortiz, C. & Arcenegui-Troya, J. & Pérez-Maqueda, L.A. & Becerra, J.A., 2023. "Integration of calcium looping and calcium hydroxide thermochemical systems for energy storage and power production in concentrating solar power plants," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:772-:d:318852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.