IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p425-d309126.html
   My bibliography  Save this article

Direct Shape Optimization and Parametric Analysis of a Vertical Inline Pump via Multi-Objective Particle Swarm Optimization

Author

Listed:
  • Xingcheng Gan

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China)

  • Wenjie Wang

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China)

  • Ji Pei

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China)

  • Shouqi Yuan

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China)

  • Yajing Tang

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China)

  • Majeed Koranteng Osman

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China)

Abstract

The vertical inline pump is a single-suction single-stage centrifugal pump with a curved inlet pipe before the impeller, which usually causes a significant increase of hydraulic losses in the inline pump. Considering the matching relationship between the inlet pipe and impeller, a multi-objective direct optimization based on the MOPSO of the inlet pipe and impeller was carried out to broaden the efficient operating area of the vertical inline pump. Bezier curves were adopted to control the profiles of the inlet pipe and impeller and 39 coordinates of the control points and the blade number were selected as the optimization variables. The efficiencies of the inline pump at the part-load and nominal conditions were chosen as the objective functions, which were obtained by the automatic simulation program. A dramatic improvement in pump performance was found after optimization. In the set of Pareto solutions, the maximum increases of efficiency at part-load and nominal conditions were 8.06% and 7.33% respectively. It also reported that the inlet pipe with longer horizontal length and lower bend curvature could reduce the hydraulic losses of the inlet pipe and increase the pump performance.

Suggested Citation

  • Xingcheng Gan & Wenjie Wang & Ji Pei & Shouqi Yuan & Yajing Tang & Majeed Koranteng Osman, 2020. "Direct Shape Optimization and Parametric Analysis of a Vertical Inline Pump via Multi-Objective Particle Swarm Optimization," Energies, MDPI, vol. 13(2), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:425-:d:309126
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Wenjie & Pavesi, Giorgio & Pei, Ji & Yuan, Shouqi, 2020. "Transient simulation on closure of wicket gates in a high-head Francis-type reversible turbine operating in pump mode," Renewable Energy, Elsevier, vol. 145(C), pages 1817-1830.
    2. Ming Liu & Lei Tan & Shuliang Cao, 2018. "Design Method of Controllable Blade Angle and Orthogonal Optimization of Pressure Rise for a Multiphase Pump," Energies, MDPI, vol. 11(5), pages 1-20, April.
    3. Seok-Yun Jeon & Joon-Yong Yoon & Choon-Man Jang, 2019. "Optimal Design of a Novel ‘S-shape’ Impeller Blade for a Microbubble Pump," Energies, MDPI, vol. 12(9), pages 1-17, May.
    4. Ji Pei & Fan Zhang & Desmond Appiah & Bo Hu & Shouqi Yuan & Ke Chen & Stephen Ntiri Asomani, 2019. "Performance Prediction Based on Effects of Wrapping Angle of a Side Channel Pump," Energies, MDPI, vol. 12(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gan, Xingcheng & Pavesi, Giorgio & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Yin, Tingyun, 2022. "Parametric investigation and energy efficiency optimization of the curved inlet pipe with induced vane of an inline pump," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Li, Helin & Liu, Xiaobing, 2020. "Tip leakage vortex trajectory and dynamics in a multiphase pump at off-design condition," Renewable Energy, Elsevier, vol. 150(C), pages 703-711.
    2. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Yang, Hong & Li, Helin & Liu, Xiaobing, 2020. "Effect of the inlet gas void fraction on the tip leakage vortex in a multiphase pump," Renewable Energy, Elsevier, vol. 150(C), pages 46-57.
    3. Feroskhan M. & Sreekanth M. & Karunamurthy K. & Sivakumar R. & Nazaruddin Sinaga & T. M. Yunus Khan, 2022. "Regression-Analysis-Based Empirical Correlations to Design Regenerative Flow Machines," Energies, MDPI, vol. 15(11), pages 1-23, May.
    4. Li, Xiaojun & Chen, Hui & Chen, Bo & Luo, Xianwu & Yang, Baofeng & Zhu, Zuchao, 2020. "Investigation of flow pattern and hydraulic performance of a centrifugal pump impeller through the PIV method," Renewable Energy, Elsevier, vol. 162(C), pages 561-574.
    5. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    6. Gan, Xingcheng & Pavesi, Giorgio & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Yin, Tingyun, 2022. "Parametric investigation and energy efficiency optimization of the curved inlet pipe with induced vane of an inline pump," Energy, Elsevier, vol. 240(C).
    7. Jinsong Zhang & Lei Tan, 2018. "Energy Performance and Pressure Fluctuation of a Multiphase Pump with Different Gas Volume Fractions," Energies, MDPI, vol. 11(5), pages 1-14, May.
    8. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump," Energy, Elsevier, vol. 208(C).
    9. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    10. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    11. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    12. Liu, Ming & Tan, Lei & Zhao, Xuechu & Ma, Can & Gou, Jinlan, 2024. "Theoretical model on transient performance of a centrifugal pump under start-up conditions in pumped-storage system," Energy, Elsevier, vol. 299(C).
    13. Sun, Longgang & Guo, Pengcheng & Yan, Jianguo, 2021. "Transient analysis of load rejection for a high-head Francis turbine based on structured overset mesh," Renewable Energy, Elsevier, vol. 171(C), pages 658-671.
    14. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Influence of viscosity on energy performance and flow field of a multiphase pump," Renewable Energy, Elsevier, vol. 162(C), pages 1151-1160.
    15. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    16. Wang, Wenjie & Tai, Geyuan & Pei, Ji & Pavesi, Giorgio & Yuan, Shouqi, 2022. "Numerical investigation of the effect of the closure law of wicket gates on the transient characteristics of pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 194(C), pages 719-733.
    17. Weihua Sun & Zhiyi Yu & Wenwu Zhang, 2022. "Effect of Shear-Thinning Property on the Energy Performance and Flow Field of an Axial Flow Pump," Energies, MDPI, vol. 15(7), pages 1-15, March.
    18. Cognet, V. & Courrech du Pont, S. & Thiria, B., 2020. "Material optimization of flexible blades for wind turbines," Renewable Energy, Elsevier, vol. 160(C), pages 1373-1384.
    19. Fan Zhang & Ke Chen & Lufeng Zhu & Desmond Appiah & Bo Hu & Shouqi Yuan, 2020. "Gas–Liquid Two-Phase Flow Investigation of Side Channel Pump: An Application of MUSIG Model," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    20. Di Zhu & Ruofu Xiao & Ran Tao & Fujun Wang, 2018. "Designing Incidence-Angle-Targeted Anti-Cavitation Foil Profiles Using a Combination Optimization Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:425-:d:309126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.