IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1817-1830.html
   My bibliography  Save this article

Transient simulation on closure of wicket gates in a high-head Francis-type reversible turbine operating in pump mode

Author

Listed:
  • Wang, Wenjie
  • Pavesi, Giorgio
  • Pei, Ji
  • Yuan, Shouqi

Abstract

To solve the problem of grid instabilities, regulation in the Pumped Hydro Energy Storage (PHES) plants should quickly respond to the variation of electricity produced by unpredictable renewable energy. In this paper, a power reduction scenario applied to a pump turbine of a PHES is simulated considering the transient closure process of wicket gate. A novel dynamic mesh technique is applied to simulate the rotation of wicket gate vanes from best efficiency point to shutdown condition. Detached Eddy Simulation (DES) turbulence model is utilized to capture complex unsteady flow and the water weak compressibility effect is considered in the transient simulation. Flow rate, torque, power and pressure are analysed by the Fast Fourier Transform (FFT) and Continuous Wavelet Transform (CWT) methods. The results illustrate the delay between the performance parameters flow rate and power and the wicket gate opening angle. The closure of wicket gates affects the flow characteristics downstream the wicket gates greatly, causing intensive pressure fluctuations. The magnitude of pressure fluctuations downstream the wicket gate becomes the highest with the wicket gate closure of about 60%. Aside the blade passage frequency, a low frequency occurs, with the appearance of unsteady flow in pump turbine. Moreover, strong torque pulsations occur on the pin of the wicket vane when the percentage of closure is between 60% and 80%, with peaks much higher than that at the best efficiency point. The transient results can provide meaningful reference to the regulation law of wicket gate for safe operation of the pump turbine.

Suggested Citation

  • Wang, Wenjie & Pavesi, Giorgio & Pei, Ji & Yuan, Shouqi, 2020. "Transient simulation on closure of wicket gates in a high-head Francis-type reversible turbine operating in pump mode," Renewable Energy, Elsevier, vol. 145(C), pages 1817-1830.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1817-1830
    DOI: 10.1016/j.renene.2019.07.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wenjie & Tai, Geyuan & Pei, Ji & Pavesi, Giorgio & Yuan, Shouqi, 2022. "Numerical investigation of the effect of the closure law of wicket gates on the transient characteristics of pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 194(C), pages 719-733.
    2. Li, Xiaojun & Chen, Hui & Chen, Bo & Luo, Xianwu & Yang, Baofeng & Zhu, Zuchao, 2020. "Investigation of flow pattern and hydraulic performance of a centrifugal pump impeller through the PIV method," Renewable Energy, Elsevier, vol. 162(C), pages 561-574.
    3. Xingcheng Gan & Wenjie Wang & Ji Pei & Shouqi Yuan & Yajing Tang & Majeed Koranteng Osman, 2020. "Direct Shape Optimization and Parametric Analysis of a Vertical Inline Pump via Multi-Objective Particle Swarm Optimization," Energies, MDPI, vol. 13(2), pages 1-18, January.
    4. Lin, Tong & Li, Xiaojun & Zhu, Zuchao & Xie, Jing & Li, Yi & Yang, Hui, 2021. "Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 163(C), pages 41-55.
    5. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    6. Sun, Longgang & Guo, Pengcheng & Yan, Jianguo, 2021. "Transient analysis of load rejection for a high-head Francis turbine based on structured overset mesh," Renewable Energy, Elsevier, vol. 171(C), pages 658-671.
    7. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    8. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1817-1830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.