IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p400-d308403.html
   My bibliography  Save this article

Thermodynamic Analysis of Advanced Gas Turbine Combined Cycle Integration with a High-Temperature Nuclear Reactor and Cogeneration Unit

Author

Listed:
  • Marek Jaszczur

    (Department of Fundamental Research in Energy Engineering, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland)

  • Michał Dudek

    (Department of Fundamental Research in Energy Engineering, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland)

  • Zygmunt Kolenda

    (Department of Fundamental Research in Energy Engineering, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

The EU has implemented targets to achieve a 20% share of energy from renewable sources by 2020, and 32% by 2030. Additionally, in the EU countries by 2050, more than 80% of electrical energy should be generated using non-greenhouse gases emission technology. At the same time, energy cost remains a crucial economic issue. From a practical point of view, the most effective technology for energy conversion is based on a gas turbine combined cycle. This technology uses natural gas, crude oil or coal gasification product but in any case, generates a significant amount of toxic gases to the atmosphere. In this study, the environmentally friendly power generation system composed of a high-temperature nuclear reactor HTR integrated with gas turbine combined cycle technology and cogeneration unit is thermodynamically analysed. The proposed solution is one of the most efficient ways for energy conversion, and what is also important it can be easily integrated with HTR. The results of analysis show that it is possible to obtain for analysed cycles thermal efficiency higher than 50% which is not only much more than could be proposed by typical lignite or hard coal power plant but is also more than can be offered by nuclear technology.

Suggested Citation

  • Marek Jaszczur & Michał Dudek & Zygmunt Kolenda, 2020. "Thermodynamic Analysis of Advanced Gas Turbine Combined Cycle Integration with a High-Temperature Nuclear Reactor and Cogeneration Unit," Energies, MDPI, vol. 13(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:400-:d:308403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2015. "Dynamic behaviour analysis of a three pressure level heat recovery steam generator during transient operation," Energy, Elsevier, vol. 90(P2), pages 1595-1605.
    2. Marina Montero Carrero & Irene Rodríguez Sánchez & Ward De Paepe & Alessandro Parente & Francesco Contino, 2019. "Is There a Future for Small-Scale Cogeneration in Europe? Economic and Policy Analysis of the Internal Combustion Engine, Micro Gas Turbine and Micro Humid Air Turbine Cycles," Energies, MDPI, vol. 12(3), pages 1-27, January.
    3. Jaskólski, Marcin & Reński, Andrzej & Minkiewicz, Tomasz, 2017. "Thermodynamic and economic analysis of nuclear power unit operating in partial cogeneration mode to produce electricity and district heat," Energy, Elsevier, vol. 141(C), pages 2470-2483.
    4. Locatelli, Giorgio & Mancini, Mauro & Todeschini, Nicola, 2013. "Generation IV nuclear reactors: Current status and future prospects," Energy Policy, Elsevier, vol. 61(C), pages 1503-1520.
    5. Benato, A. & Bracco, S. & Stoppato, A. & Mirandola, A., 2016. "LTE: A procedure to predict power plants dynamic behaviour and components lifetime reduction during transient operation," Applied Energy, Elsevier, vol. 162(C), pages 880-891.
    6. Luca Urbanucci & Francesco D’Ettorre & Daniele Testi, 2019. "A Comprehensive Methodology for the Integrated Optimal Sizing and Operation of Cogeneration Systems with Thermal Energy Storage," Energies, MDPI, vol. 12(5), pages 1-17, March.
    7. Seddon Atkinson & Dzianis Litskevich & Bruno Merk, 2018. "Variable Reactivity Control in Small Modular High Temperature Reactors Using Moderation Manipulation Techniques," Energies, MDPI, vol. 11(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenqi Tang & Lingen Chen & Huijun Feng & Wenhua Wang & Yanlin Ge, 2020. "Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs," Energies, MDPI, vol. 13(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghabraei, Soheil & Moradi, Hamed & Vossoughi, Gholamreza, 2018. "Design & application of adaptive variable structure &H∞ robust optimal schemes in nonlinear control of boiler-turbine unit in the presence of various uncertainties," Energy, Elsevier, vol. 142(C), pages 1040-1056.
    2. Wu, Zhenlong & Li, Donghai & Xue, Yali & Chen, YangQuan, 2019. "Gain scheduling design based on active disturbance rejection control for thermal power plant under full operating conditions," Energy, Elsevier, vol. 185(C), pages 744-762.
    3. Alberto Benato & Alarico Macor, 2017. "Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle," Energies, MDPI, vol. 10(3), pages 1-18, March.
    4. Hübel, Moritz & Meinke, Sebastian & Andrén, Marcus T. & Wedding, Christoffer & Nocke, Jürgen & Gierow, Conrad & Hassel, Egon & Funkquist, Jonas, 2017. "Modelling and simulation of a coal-fired power plant for start-up optimisation," Applied Energy, Elsevier, vol. 208(C), pages 319-331.
    5. Wang, Chaoyang & Liu, Ming & Li, Bingxin & Liu, Yiwen & Yan, Junjie, 2017. "Thermodynamic analysis on the transient cycling of coal-fired power plants: Simulation study of a 660 MW supercritical unit," Energy, Elsevier, vol. 122(C), pages 505-527.
    6. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2021. "Optimisation of heating and cooling of pressure thick-walled components operating in the saturated steam area," Energy, Elsevier, vol. 231(C).
    7. Alarico Macor & Alberto Benato, 2020. "Regulated Emissions of Biogas Engines—On Site Experimental Measurements and Damage Assessment on Human Health," Energies, MDPI, vol. 13(5), pages 1-38, February.
    8. Jiecheng Zhu & Xitian Wang & Da Xie & Chenghong Gu, 2019. "Control Strategy for MGT Generation System Optimized by Improved WOA to Enhance Demand Response Capability," Energies, MDPI, vol. 12(16), pages 1-20, August.
    9. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    10. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.
    11. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Christian von Hirschhausen, 2022. "Nuclear Power in the Twenty-first Century (Part II) - The Economic Value of Plutonium," Discussion Papers of DIW Berlin 2011, DIW Berlin, German Institute for Economic Research.
    13. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    15. Obida Zeitoun & Jamel Orfi & Salah Ud-Din Khan & Hany Al-Ansary, 2023. "Desalinated Water Costs from Steam, Combined, and Nuclear Cogeneration Plants Using Power and Heat Allocation Methods," Energies, MDPI, vol. 16(6), pages 1-28, March.
    16. Wei Wang & Yang Sun & Sitong Jing & Wenguang Zhang & Can Cui, 2018. "Improved Boiler-Turbine Coordinated Control of CHP Units with Heat Accumulators by Introducing Heat Source Regulation," Energies, MDPI, vol. 11(10), pages 1-15, October.
    17. Akpan, P.U. & Fuls, W.F., 2021. "Cycling of coal fired power plants: A generic CO2 emissions factor model for predicting CO2 emissions," Energy, Elsevier, vol. 214(C).
    18. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    19. Schröders, Sarah & Allelein, Hans-Josef, 2018. "Energy economic evaluation of process heat supply by solar tower and high temperature reactor based on the ammonia production process," Applied Energy, Elsevier, vol. 212(C), pages 622-639.
    20. Salah Ud-Din Khan & Zeyad Almutairi & Meshari Alanazi, 2021. "Techno-Economic Assessment of Fuel Cycle Facility of System Integrated Modular Advanced Reactor (SMART)," Sustainability, MDPI, vol. 13(21), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:400-:d:308403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.