IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p318-d306745.html
   My bibliography  Save this article

Dynamic Tariff for Day-Ahead Congestion Management in Agent-Based LV Distribution Networks

Author

Listed:
  • Niyam Haque

    (Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

  • Anuradha Tomar

    (Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

  • Phuong Nguyen

    (Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
    Sustainable Energy Systems Group, SUSTAIN—ERIN, Luxembourg Institute of Science and Technology, L-4422 Belvaux, Luxembourg)

  • Guus Pemen

    (Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

Abstract

Capacity challenges are becoming more frequent phenomena in residential distribution networks with new forms of loads, distributed renewable energy resources (RES) and price-responsive applications. Different types of demand response programs have been introduced to tackle these challenges through iterative changes in price and/or contractual participations based on incentives. In this research, a dynamic network tariff-based demand response program is proposed to address congestion problems in low-voltage (LV) networks. The formulation takes advantage of the scalable architecture of the agent-based systems that allows local decision making with limited communication. Energy consumption schedules are developed on a day-ahead basis depending on the expected cost of overloading for a number of probable scenarios. The performance of the proposed approach has been tested through simulations in the unbalanced IEEE European LV test feeder. Simulation results reveal up to 82% reduction in congestion on a monthly basis, while maintaining the quality of supply in the network.

Suggested Citation

  • Niyam Haque & Anuradha Tomar & Phuong Nguyen & Guus Pemen, 2020. "Dynamic Tariff for Day-Ahead Congestion Management in Agent-Based LV Distribution Networks," Energies, MDPI, vol. 13(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:318-:d:306745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    2. Simone Minniti & Niyam Haque & Phuong Nguyen & Guus Pemen, 2018. "Local Markets for Flexibility Trading: Key Stages and Enablers," Energies, MDPI, vol. 11(11), pages 1-21, November.
    3. Lampropoulos, Ioannis & van den Broek, Machteld & van der Hoofd, Erik & Hommes, Klaas & van Sark, Wilfried, 2018. "A system perspective to the deployment of flexibility through aggregator companies in the Netherlands," Energy Policy, Elsevier, vol. 118(C), pages 534-551.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán & Jose L. Martínez-Ramos, 2021. "Centralized Control of Distribution Networks with High Penetration of Renewable Energies," Energies, MDPI, vol. 14(14), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    3. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    4. Vinay Kumar Jadoun & Nipun Sharma & Piyush Jha & Jayalakshmi N. S. & Hasmat Malik & Fausto Pedro Garcia Márquez, 2021. "Optimal Scheduling of Dynamic Pricing Based V2G and G2V Operation in Microgrid Using Improved Elephant Herding Optimization," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    5. Pedro Faria & Zita Vale, 2019. "Distributed Energy Resources Management 2018," Energies, MDPI, vol. 13(1), pages 1-4, December.
    6. Chun Xia-Bauer & Florin Vondung & Stefan Thomas & Raphael Moser, 2022. "Business Model Innovations for Renewable Energy Prosumer Development in Germany," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    7. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    8. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    9. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    10. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    11. Ádám Sleisz & Dániel Divényi & Beáta Polgári & Péter Sőrés & Dávid Raisz, 2022. "A Novel Cost Allocation Mechanism for Local Flexibility in the Power System with Partial Disintermediation," Energies, MDPI, vol. 15(22), pages 1-18, November.
    12. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Fernando Lezama & Ricardo Faia & Pedro Faria & Zita Vale, 2020. "Demand Response of Residential Houses Equipped with PV-Battery Systems: An Application Study Using Evolutionary Algorithms," Energies, MDPI, vol. 13(10), pages 1-18, May.
    14. Nieta, Agustín A. Sánchez de la & Ilieva, Iliana & Gibescu, Madeleine & Bremdal, Bernt & Simonsen, Stig & Gramme, Eivind, 2021. "Optimal midterm peak shaving cost in an electricity management system using behind customers’ smart meter configuration," Applied Energy, Elsevier, vol. 283(C).
    15. Babagheibi, Mahsa & Jadid, Shahram & Kazemi, Ahad, 2023. "An Incentive-based robust flexibility market for congestion management of an active distribution system to use the free capacity of Microgrids," Applied Energy, Elsevier, vol. 336(C).
    16. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    17. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    18. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Krkoleva Mateska, Aleksandra & Borozan, Vesna & Krstevski, Petar & Taleski, Rubin, 2018. "Controllable load operation in microgrids using control scheme based on gossip algorithm," Applied Energy, Elsevier, vol. 210(C), pages 1336-1346.
    20. Andrew Blohm & Jaden Crawford & Steven A. Gabriel, 2021. "Demand Response as a Real-Time, Physical Hedge for Retail Electricity Providers: The Electric Reliability Council of Texas Market Case Study," Energies, MDPI, vol. 14(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:318-:d:306745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.