IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6626-d462600.html
   My bibliography  Save this article

Technological Effectiveness of Sugar-Industry Effluent Methane Fermentation in a Fluidized Active Filling Reactor (FAF-R)

Author

Listed:
  • Marcin Dębowski

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Marcin Zieliński

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

Abstract

Technological solutions allowing the increase of the technological efficiency of anaerobic methods of wastewater treatment are still under investigation. The weaknesses of these solutions can be limited by the use of active fillings. The aim of the present study was to determine the impact of fluidized active filling on the effectiveness of anaerobic treatment of sugar-industry effluent, the production efficiency and the qualitative composition of the biogas produced. High, comparable ( p = 0.05) effluent treatment results were observed at tested organic load rates between 4.0 and 6.0 kg COD (Chemical Oxygen Demand)/m 3 ·d. The COD removal rate reached over 74%, biogas yields ranged from 356 ± 25 to 427 ± 14 dm 3 /kg COD removed and the average methane contents were approximately 70%. A significant decrease in effluent treatment efficiency and methane fermentation was observed after increasing the organic load rate to 8.0 kg COD/m 3 ·d, which correlated with decreased pH and FOS/TAC (volatile organic acid and buffer capacity ratio) increased to 0.44 ± 0.2. The use of fluidized active filling led to phosphorus removal with an efficiency ranged from 64.4 ± 2.4 to 81.2 ± 8.2% depending on the stage. Low concentration of total suspended solids in the treated effluent was also observed.

Suggested Citation

  • Marcin Dębowski & Marcin Zieliński, 2020. "Technological Effectiveness of Sugar-Industry Effluent Methane Fermentation in a Fluidized Active Filling Reactor (FAF-R)," Energies, MDPI, vol. 13(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6626-:d:462600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6626/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6626/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John F. Hallas & Cheryl L. Mackowiak & Ann C. Wilkie & Willie G. Harris, 2019. "Struvite Phosphorus Recovery from Aerobically Digested Municipal Wastewater," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    2. Sina Shaddel & Hamidreza Bakhtiary-Davijany & Christian Kabbe & Farbod Dadgar & Stein W. Østerhus, 2019. "Sustainable Sewage Sludge Management: From Current Practices to Emerging Nutrient Recovery Technologies," Sustainability, MDPI, vol. 11(12), pages 1-12, June.
    3. Maria Concetta Tomei & Valentina Stazi & Saba Daneshgar & Andrea G. Capodaglio, 2020. "Holistic Approach to Phosphorus Recovery from Urban Wastewater: Enhanced Biological Removal Combined with Precipitation," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    4. Kit Wayne Chew & Shir Reen Chia & Hong-Wei Yen & Saifuddin Nomanbhay & Yeek-Chia Ho & Pau Loke Show, 2019. "Transformation of Biomass Waste into Sustainable Organic Fertilizers," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Viola Somogyi & Viktória Pitás & Kinga M. Berta & Róbert Kurdi, 2022. "Red Mud as Adsorbent to Recover Phosphorous from Wastewater Streams," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    3. Joseph Jjagwe & Allan John Komakech & Jeninah Karungi & Arabel Amann & Joshua Wanyama & Jakob Lederer, 2019. "Assessment of a Cattle Manure Vermicomposting System Using Material Flow Analysis: A Case Study from Uganda," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    4. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    5. Elane Tyara de Jesus Siqueira & Rosane Claudia Rodrigues & José Roberto Brito Freitas & André da Silva Alves & Zinaldo Firmino da Silva & Edmilson Igor Bernardo Almeida & Marcos Gervasio Pereira & D, 2020. "Sugarcane Production Based on Mineral and Organic Nitrogen Fertilizers for Ruminant Feeding," Journal of Agricultural Studies, Macrothink Institute, vol. 8(2), pages 678-689, June.
    6. Nasser Al-Suhaibani & Mostafa Selim & Ali Alderfasi & Salah El-Hendawy, 2021. "Integrated Application of Composted Agricultural Wastes, Chemical Fertilizers and Biofertilizers as an Avenue to Promote Growth, Yield and Quality of Maize in an Arid Agro-Ecosystem," Sustainability, MDPI, vol. 13(13), pages 1-26, July.
    7. Magdalena Szymańska & Tomasz Sosulski & Ewa Szara & Adam Wąs & Piotr Sulewski & Gijs W.P. van Pruissen & René L. Cornelissen, 2019. "Ammonium Sulphate from a Bio-Refinery System as a Fertilizer—Agronomic and Economic Effectiveness on the Farm Scale," Energies, MDPI, vol. 12(24), pages 1-15, December.
    8. TsingHai Wang & Cheng-Di Dong & Jui-Yen Lin & Chiu-Wen Chen & Jo-Shu Chang & Hyunook Kim & Chin-Pao Huang & Chang-Mao Hung, 2021. "Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    9. Aseel Najeeb Ajaweed & Fikrat M. Hassan & Nadhem H. Hyder, 2022. "Evaluation of Physio-Chemical Characteristics of Bio Fertilizer Produced from Organic Solid Waste Using Composting Bins," Sustainability, MDPI, vol. 14(8), pages 1-12, April.
    10. Natalia Milojevic & Agnieszka Cydzik-Kwiatkowska, 2021. "Agricultural Use of Sewage Sludge as a Threat of Microplastic (MP) Spread in the Environment and the Role of Governance," Energies, MDPI, vol. 14(19), pages 1-16, October.
    11. Karla G. Morrissey & Leah English & Greg Thoma & Jennie Popp, 2022. "Prospective Life Cycle Assessment and Cost Analysis of Novel Electrochemical Struvite Recovery in a U.S. Wastewater Treatment Plant," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    12. Tanaka Mandy Mbavarira & Christine Grimm, 2021. "A Systemic View on Circular Economy in the Water Industry: Learnings from a Belgian and Dutch Case," Sustainability, MDPI, vol. 13(6), pages 1-62, March.
    13. Rabia Abdur Rehman & Muhammad Farooq Qayyum & Ghulam Haider & Kate Schofield & Muhammad Abid & Muhammad Rizwan & Shafaqat Ali, 2021. "The Sewage Sludge Biochar and Its Composts Influence the Phosphate Sorption in an Alkaline–Calcareous Soil," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    14. Monika Jakubus, 2023. "Quantitative Distribution and Contamination Risk Assessment of Cu and Zn in Municipal Sewage Sludge," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    15. Xiaoqi Liu & Jialong Lv, 2023. "Efficient Phosphate Removal from Wastewater by Ca-Laden Biochar Composites Prepared from Eggshell and Peanut Shells: A Comparison of Methods," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    16. Nidhal Marzougui & Nadia Ounalli & Sonia Sabbahi & Tarek Fezzani & Farah Abidi & Sihem Jebari & Sourour Melki & Ronny Berndtsson & Walid Oueslati, 2022. "How Can Sewage Sludge Use in Sustainable Tunisian Agriculture Be Increased?," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    17. David Palma-Heredia & Manel Poch & Miquel À. Cugueró-Escofet, 2020. "Implementation of a Decision Support System for Sewage Sludge Management," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    18. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    19. Oumaima Mabrouk & Helmi Hamdi & Sami Sayadi & Mohammad A. Al-Ghouti & Mohammed H. Abu-Dieyeh & Nabil Zouari, 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    20. Augusto Bianchini & Jessica Rossi, 2020. "An Integrated Industry-Based Methodology to Unlock Full-Scale Implementation of Phosphorus Recovery Technology," Sustainability, MDPI, vol. 12(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6626-:d:462600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.