IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v416y2022ics0096300321008420.html
   My bibliography  Save this article

Improved finite-time solutions to time-varying Sylvester tensor equation via zeroing neural networks

Author

Listed:
  • Xiao, Lin
  • Li, Xiaopeng
  • Jia, Lei
  • Liu, Sai

Abstract

Based on the standard method of zeroing neural network (ZNN) for time-varying matrix problems, three improved ZNN models are proposed and extended to solve the time-varying Sylvester tensor equation (TV-STE) in finite-time. These presented ZNN models, which mainly use classical sign-bi-power (S-B-P) activation function and varying parameters, are S-B-P based ZNN (S-ZNN), S-B-P function based linear varying parameter ZNN (LVP-ZNN) and S-B-P function based exponential varying parameter ZNN (EVP-ZNN) models. Due to the applications of S-B-P activation function and varying parameters, the S-ZNN, LVP-ZNN and EVP-ZNN models can accomplish finite-time convergence, i.e., the state solutions generated by these models can converge to the analytical solutions of the TV-STE problem in finite-time. Further, based on the relationship between error, design parameter and convergence property, a dynamic varying parameter adapted to the error variation is designed and applied to the S-ZNN model. Then an error-adaptive dynamic varying parameter ZNN (DVP-ZNN) model is obtained for the TV-STE, which possesses faster finite-time convergence. These four models are proved to be stable and their upper bounds of convergence time are derived and analyzed. Theoretical analyses and comparison experiments demonstrate that the proposed ZNN models can solve the TV-STE in finite-time and the convergence of the DVP-ZNN model is the best.

Suggested Citation

  • Xiao, Lin & Li, Xiaopeng & Jia, Lei & Liu, Sai, 2022. "Improved finite-time solutions to time-varying Sylvester tensor equation via zeroing neural networks," Applied Mathematics and Computation, Elsevier, vol. 416(C).
  • Handle: RePEc:eee:apmaco:v:416:y:2022:i:c:s0096300321008420
    DOI: 10.1016/j.amc.2021.126760
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321008420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126760?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alaa El Ichi & Khalide Jbilou & Rachid Sadaka, 2020. "Tensor Global Extrapolation Methods Using the n-Mode and the Einstein Products," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    2. Zhen Chen & Linzhang Lu, 2013. "A Gradient Based Iterative Solutions for Sylvester Tensor Equations," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, March.
    3. Xiao, Lin & Yi, Qian & Zuo, Qiuyue & He, Yongjun, 2020. "Improved finite-time zeroing neural networks for time-varying complex Sylvester equation solving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 246-258.
    4. Weijermars, Ruud & Pham, Tri & Ettehad, Mahmood, 2020. "Linear superposition method (LSM) for solving stress tensor fields and displacement vector fields: Application to multiple pressure-loaded circular holes in an elastic plate with far-field stress," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    5. Lv, Changqing & Ma, Changfeng, 2020. "A modified CG algorithm for solving generalized coupled Sylvester tensor equations," Applied Mathematics and Computation, Elsevier, vol. 365(C).
    6. Dolgov, Sergey & Pearson, John W. & Savostyanov, Dmitry V. & Stoll, Martin, 2016. "Fast tensor product solvers for optimization problems with fractional differential equations as constraints," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 604-623.
    7. Huang, Baohua & Ma, Changfeng, 2020. "Global least squares methods based on tensor form to solve a class of generalized Sylvester tensor equations," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Zhaohui & Ning, Yingqiang & Xiao, Lin & Luo, Jiajie & Li, Xiaopeng, 2023. "Finite-time zeroing neural networks with novel activation function and variable parameter for solving time-varying Lyapunov tensor equation," Applied Mathematics and Computation, Elsevier, vol. 452(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xin-Fang & Wang, Qing-Wen, 2021. "Developing iterative algorithms to solve Sylvester tensor equations," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    2. Huang, Guang-Xin & Chen, Qi-Xing & Yin, Feng, 2022. "Preconditioned TBiCOR and TCORS algorithms for solving the Sylvester tensor equation," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    3. Qi, Zhaohui & Ning, Yingqiang & Xiao, Lin & Luo, Jiajie & Li, Xiaopeng, 2023. "Finite-time zeroing neural networks with novel activation function and variable parameter for solving time-varying Lyapunov tensor equation," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    4. Tao Li & Qing-Wen Wang & Xin-Fang Zhang, 2022. "A Modified Conjugate Residual Method and Nearest Kronecker Product Preconditioner for the Generalized Coupled Sylvester Tensor Equations," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    5. Chen, Qi-Xing & Huang, Guang-Xin & Zhang, Ming-Yue, 2024. "Preconditioned BiCGSTAB and BiCRSTAB methods for solving the Sylvester tensor equation," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    6. Tri Pham & Ruud Weijermars, 2020. "Hydraulic Fracture Propagation in a Poro-Elastic Medium with Time-Dependent Injection Schedule Using the Time-Stepped Linear Superposition Method (TLSM)," Energies, MDPI, vol. 13(24), pages 1-22, December.
    7. Eisa Khosravi Dehdezi, 2021. "Iterative Methods for Solving Sylvester Transpose Tensor Equation $$~\mathcal A\star _N\mathcal X\star _M\mathcal {B}+\mathcal {C}\star _M\mathcal X^T\star _N\mathcal {D}=\mathcal {E}$$ A ⋆ N X ⋆ M B ," SN Operations Research Forum, Springer, vol. 2(4), pages 1-21, December.
    8. Zhu, Jingcan & Jin, Jie & Chen, Weijie & Gong, Jianqiang, 2022. "A combined power activation function based convergent factor-variable ZNN model for solving dynamic matrix inversion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 291-307.
    9. Ruud Weijermars & Jihoon Wang, 2021. "Stress Reversals near Hydraulically Fractured Wells Explained with Linear Superposition Method (LSM)," Energies, MDPI, vol. 14(11), pages 1-22, June.
    10. Oumaima Benchettou & Abdeslem Hafid Bentbib & Abderrahman Bouhamidi, 2023. "An Accelerated Tensorial Double Proximal Gradient Method for Total Variation Regularization Problem," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 111-134, July.
    11. Jin, Jie & Chen, Weijie & Qiu, Lixin & Zhu, Jingcan & Liu, Haiyan, 2023. "A noise tolerant parameter-variable zeroing neural network and its applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 482-498.
    12. Khosravi Dehdezi, Eisa & Karimi, Saeed, 2022. "A rapid and powerful iterative method for computing inverses of sparse tensors with applications," Applied Mathematics and Computation, Elsevier, vol. 415(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:416:y:2022:i:c:s0096300321008420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.