IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6428-d457075.html
   My bibliography  Save this article

A Study on the Prediction of the Temperature and Mass of Hydrogen Gas inside a Tank during Fast Filling Process

Author

Listed:
  • Ji-Qiang Li

    (Department of Mechanical Engineering, Graduate School, Hoseo University, Asan 31499, Korea)

  • No-Seuk Myoung

    (Department of Mechanical Engineering, Graduate School, Hoseo University, Asan 31499, Korea)

  • Jeong-Tae Kwon

    (Division of Mechanical and Automotive Engineering, Hoseo University, Asan 31499, Korea)

  • Seon-Jun Jang

    (Division of Mechanical and Automotive Engineering, Hoseo University, Asan 31499, Korea)

  • Taeckhong Lee

    (Division of Chemical Engineering, Hoseo University, Asan 31499, Korea)

Abstract

The hydrogen compression cycle system recycles hydrogen compressed by a compressor at high pressure and stores it in a high-pressure container. Thermal stress is generated due to increase in the pressure and temperature of hydrogen in the hydrogen storage tank during the fast filing process. For the sake of safety, it is of great practical significance to predict and control the temperature change in the tank. The hydrogen charging process in the storage tank of the hydrogen charging station was studied by experimentation and simulation. In this paper, a Computational Fluid Dynamics (CFD) model for non-adiabatic real filling of a 50 MPa hydrogen cylinder was presented. In addition, a shear stress transport (k-ω) model and real gas model were used in order to account for thermo-fluid dynamics during the filling of hydrogen storage tanks (50 MPa, 343 L). Compared to the simulation results with the experimental data carried out under the same conditions, the temperatures calculated from the simulated non-adiabatic condition results were lower (by 5.3%) than those from the theoretical adiabatic condition calculation. The theoretical calculation was based on the experimentally measured pressure value. The calculated simulation mass was 8.23% higher than the theoretical result. The results of this study will be very useful in future hydrogen energy research and hydrogen charging station developments.

Suggested Citation

  • Ji-Qiang Li & No-Seuk Myoung & Jeong-Tae Kwon & Seon-Jun Jang & Taeckhong Lee, 2020. "A Study on the Prediction of the Temperature and Mass of Hydrogen Gas inside a Tank during Fast Filling Process," Energies, MDPI, vol. 13(23), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6428-:d:457075
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Young Min Kim & Dong Gil Shin & Chang Gi Kim, 2019. "On-Board Cold Thermal Energy Storage System for Hydrogen Fueling Process," Energies, MDPI, vol. 12(3), pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Genovese & David Blekhman & Michael Dray & Francesco Piraino & Petronilla Fragiacomo, 2023. "Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method," Energies, MDPI, vol. 16(15), pages 1-14, August.
    2. Ji-Qiang Li & Ji-Chao Li & Kyoungwoo Park & Seon-Jun Jang & Jeong-Tae Kwon, 2021. "An Analysis on the Compressed Hydrogen Storage System for the Fast-Filling Process of Hydrogen Gas at the Pressure of 82 MPa," Energies, MDPI, vol. 14(9), pages 1-18, May.
    3. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    4. José Manuel Andújar & Francisca Segura & Jesús Rey & Francisco José Vivas, 2022. "Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option," Energies, MDPI, vol. 15(17), pages 1-32, August.
    5. Jiepu Li & Junhao Liu & Baodi Zhao & Dongyu Wang & Shufen Guo & Jitian Song & Xiang Li, 2023. "Research on Temperature Rise of Type IV Composite Hydrogen Storage Cylinders in Hydrogen Fast-Filling Process," Energies, MDPI, vol. 16(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
    2. Xinghui Zhang & Qili Shi & Lingai Luo & Yilin Fan & Qian Wang & Guanguan Jia, 2021. "Research Progress on the Phase Change Materials for Cold Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-46, December.
    3. Ji-Qiang Li & Ji-Chao Li & Kyoungwoo Park & Seon-Jun Jang & Jeong-Tae Kwon, 2021. "An Analysis on the Compressed Hydrogen Storage System for the Fast-Filling Process of Hydrogen Gas at the Pressure of 82 MPa," Energies, MDPI, vol. 14(9), pages 1-18, May.
    4. Jianjun Ye & Zhenhua Zhao & Jinyang Zheng & Shehab Salem & Jiangcun Yu & Junxu Cui & Xiaoyi Jiao, 2020. "Transient Flow Characteristic of High-Pressure Hydrogen Gas in Check Valve during the Opening Process," Energies, MDPI, vol. 13(16), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6428-:d:457075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.