IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6166-d450170.html
   My bibliography  Save this article

Impact of Fan Airflow of IT Equipment on Thermal Environment and Energy Consumption of a Data Center

Author

Listed:
  • Naoki Futawatari

    (NTT FACILITIES, INC., Minato-ku, Tokyo 1080023, Japan)

  • Yosuke Udagawa

    (NTT FACILITIES, INC., Minato-ku, Tokyo 1080023, Japan)

  • Taro Mori

    (Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 0608628, Japan)

  • Hirofumi Hayama

    (Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 0608628, Japan)

Abstract

Energy-saving in regard to heating, ventilation, and air-conditioning (HVAC) in data centers is strongly required. Therefore, to improve the operating efficiency of the cooling equipment and extend the usage time of the economizer used for cooling information-technology equipment (ITE) in a data center, it is often the case that a high air-supply temperature within the range in which the ITE can be sufficiently cooled is selected. In the meantime, it is known that when the ambient temperature of the ITE rises, the speed of the built-in cooling fan increases. Acceleration of the built-in fan is thought to affect the cooling performance and energy consumption of the data center. Therefore, a method for predicting the temperature of a data center—which simply correlates supply-air temperature with ITE inlet temperature by utilizing existing indicators, such as air-segregation efficiency (ASE)—is proposed in this study. Moreover, a method for optimizing the total energy consumption of a data center is proposed. According to the prediction results obtained under the assumption of certain computer-room air-conditioning (CRAC) conditions, by lowering the ITE inlet temperature from 27 °C to 18 °C, the total energy consumption of the machine room is reduced by about 10%.

Suggested Citation

  • Naoki Futawatari & Yosuke Udagawa & Taro Mori & Hirofumi Hayama, 2020. "Impact of Fan Airflow of IT Equipment on Thermal Environment and Energy Consumption of a Data Center," Energies, MDPI, vol. 13(23), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6166-:d:450170
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Durand-Estebe, Baptiste & Le Bot, Cédric & Mancos, Jean Nicolas & Arquis, Eric, 2014. "Simulation of a temperature adaptive control strategy for an IWSE economizer in a data center," Applied Energy, Elsevier, vol. 134(C), pages 45-56.
    2. Ham, Sang-Woo & Kim, Min-Hwi & Choi, Byung-Nam & Jeong, Jae-Weon, 2015. "Energy saving potential of various air-side economizers in a modular data center," Applied Energy, Elsevier, vol. 138(C), pages 258-275.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
    2. Han, Zongwei & Wei, Haotian & Sun, Xiaoqing & Bai, Chenguang & Xue, Da & Li, Xiuming, 2020. "Study on influence of operating parameters of data center air conditioning system based on the concept of on-demand cooling," Renewable Energy, Elsevier, vol. 160(C), pages 99-111.
    3. Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
    4. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Ruixue Dong & Yuting Wu, 2022. "Experimental Investigation of Heat Transfer and Flow Characteristics of Split Natural Cooling System for Data Center Based on Micro Heat Pipe Array," Energies, MDPI, vol. 15(12), pages 1-22, June.
    5. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    6. Leehter Yao & Jin-Hao Huang, 2019. "Multi-Objective Optimization of Energy Saving Control for Air Conditioning System in Data Center," Energies, MDPI, vol. 12(8), pages 1-16, April.
    7. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    8. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    9. Yu-Jin Kim & Kwang-Hee Kim & Ju-Wan Ha & Young-Hak Song, 2024. "Research on a Plan of Free Cooling Operation Control for the Efficiency Improvement of a Water-Side Economizer," Energies, MDPI, vol. 17(12), pages 1-17, June.
    10. Silva-Llanca, Luis & Ortega, Alfonso & Fouladi, Kamran & del Valle, Marcelo & Sundaralingam, Vikneshan, 2018. "Determining wasted energy in the airside of a perimeter-cooled data center via direct computation of the Exergy Destruction," Applied Energy, Elsevier, vol. 213(C), pages 235-246.
    11. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Zichu Liu, 2020. "Thermal Performance and Energy Saving Analysis of Indoor Air–Water Heat Exchanger Based on Micro Heat Pipe Array for Data Center," Energies, MDPI, vol. 13(2), pages 1-24, January.
    12. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    13. Pio Alessandro Lombardi & Kranthi Ranadheer Moreddy & André Naumann & Przemyslaw Komarnicki & Carmine Rodio & Sergio Bruno, 2019. "Data Centers as Active Multi-Energy Systems for Power Grid Decarbonization: A Technical and Economic Analysis," Energies, MDPI, vol. 12(21), pages 1-14, November.
    14. Cristina Ramos Cáceres & Suzanna Törnroth & Mattias Vesterlund & Andreas Johansson & Marcus Sandberg, 2022. "Data-Center Farming: Exploring the Potential of Industrial Symbiosis in a Subarctic Region," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    15. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    16. Petrović, Stefan & Colangelo, Alessandro & Balyk, Olexandr & Delmastro, Chiara & Gargiulo, Maurizio & Simonsen, Mikkel Bosack & Karlsson, Kenneth, 2020. "The role of data centres in the future Danish energy system," Energy, Elsevier, vol. 194(C).
    17. Qu, Shengli & Duan, Kaiwen & Guo, Yuxiang & Feng, Yiwei & Wang, Chuang & Xing, Ziwen, 2024. "Real-time optimization of the liquid-cooled data center based on cold plates under different ambient temperatures and thermal loads," Applied Energy, Elsevier, vol. 363(C).
    18. Yuan, Xiaolei & Liang, Yumin & Hu, Xinyi & Xu, Yizhe & Chen, Yongbao & Kosonen, Risto, 2023. "Waste heat recoveries in data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Fan, Chengliang & Hinkelman, Kathryn & Fu, Yangyang & Zuo, Wangda & Huang, Sen & Shi, Chengnan & Mamaghani, Nasim & Faulkner, Cary & Zhou, Xiaoqing, 2021. "Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer," Applied Energy, Elsevier, vol. 299(C).
    20. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6166-:d:450170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.