IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5760-d439521.html
   My bibliography  Save this article

Field Test of Wind Power Output Fluctuation Control Using an Energy Storage System on Jeju Island

Author

Listed:
  • Sang Heon Chae

    (Electric Energy Research Center, Jeju National University, Jejudaehakno 102, Jeju-si 63243, Korea)

  • Chul Uoong Kang

    (Department of Mechatronics Engineering, Jeju National University, Jejudaehakno 102, Jeju-si 63243, Korea)

  • Eel-Hwan Kim

    (Department of Electrical Engineering, Jeju National University Jejudaehakno 102, Jeju-si 63243, Korea)

Abstract

At present, renewable energy installations are expanding to solve both environmental problems and expensive energy fuel import prices in isolated areas. However, in a small-scale power system, rapid output fluctuations of renewable energy may cause power quality problems such as voltage and frequency fluctuations in the power system. To solve this problem, the local government of Jeju Island in South Korea implemented a megawatt (MW)-class pilot project to stabilize the output power of wind turbines using an energy storage system (ESS). In this project, a 0.5 MWh lithium-ion battery was connected to a 3 MW wind turbine via 1 MW power conversion system (PCS). In this paper, the field test results were divided into four categories as follows. First, the performance of stabilizing the output of the wind turbine using ESS was confirmed. Second, the control performance of the ESS was confirmed when the wind turbine suddenly stopped due to an accident. Third, it was confirmed that the ESS discharged energy into the power system after the stabilization of the wind turbine output. Fourth, the reasons for the failure of the ESS to control output stabilization of the wind turbine were analyzed through MATLAB simulation.

Suggested Citation

  • Sang Heon Chae & Chul Uoong Kang & Eel-Hwan Kim, 2020. "Field Test of Wind Power Output Fluctuation Control Using an Energy Storage System on Jeju Island," Energies, MDPI, vol. 13(21), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5760-:d:439521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    2. Honrubia-Escribano, A. & Gómez-Lázaro, E. & Fortmann, J. & Sørensen, P. & Martin-Martinez, S., 2018. "Generic dynamic wind turbine models for power system stability analysis: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1939-1952.
    3. Guo, Peng & Chen, Si & Chu, Jingchun & Infield, David, 2020. "Wind direction fluctuation analysis for wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1026-1035.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Micke Talvi & Tomi Roinila & Kari Lappalainen, 2023. "Effects of Ramp Rate Limit on Sizing of Energy Storage Systems for PV, Wind and PV–Wind Power Plants," Energies, MDPI, vol. 16(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    2. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    3. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    4. Francisco Jiménez-Buendía & Raquel Villena-Ruiz & Andrés Honrubia-Escribano & Ángel Molina-García & Emilio Gómez-Lázaro, 2019. "Submission of a WECC DFIG Wind Turbine Model to Spanish Operation Procedure 12.3," Energies, MDPI, vol. 12(19), pages 1-16, September.
    5. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    6. Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
    7. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
    8. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    9. Croonenbroeck, Carsten & Hennecke, David, 2020. "Does the German renewable energy act provide a fair incentive system for onshore wind power? — A simulation analysis," Energy Policy, Elsevier, vol. 144(C).
    10. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    11. Pal, Rudra Sankar & Mukherjee, V., 2020. "Metaheuristic based comparative MPPT methods for photovoltaic technology under partial shading condition," Energy, Elsevier, vol. 212(C).
    12. Lai, Wenzhe & Zhen, Zhao & Wang, Fei & Fu, Wenjie & Wang, Junlong & Zhang, Xudong & Ren, Hui, 2024. "Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations," Energy, Elsevier, vol. 288(C).
    13. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    14. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    15. Raquel Villena-Ruiz & Alberto Lorenzo-Bonache & Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Emilio Gómez-Lázaro, 2019. "Implementation of IEC 61400-27-1 Type 3 Model: Performance Analysis under Different Modeling Approaches," Energies, MDPI, vol. 12(14), pages 1-23, July.
    16. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    17. Ephraim Bonah Agyekum & Tomiwa Sunday Adebayo & Festus Victor Bekun & Nallapaneni Manoj Kumar & Manoj Kumar Panjwani, 2021. "Effect of Two Different Heat Transfer Fluids on the Performance of Solar Tower CSP by Comparing Recompression Supercritical CO 2 and Rankine Power Cycles, China," Energies, MDPI, vol. 14(12), pages 1-19, June.
    18. Ogunniyi, Emmanuel & Richards, Bryce S., 2024. "Renewable energy powered membrane technology: Power control management for enhanced photovoltaic-membrane system performance across multiple solar days," Applied Energy, Elsevier, vol. 371(C).
    19. Martínez – Lucas, Guillermo & Sarasua, José Ignacio & Fernández – Guillamón, Ana & Molina – García, Ángel, 2021. "Combined hydro-wind frequency control scheme: Modal analysis and isolated power system case example," Renewable Energy, Elsevier, vol. 180(C), pages 1056-1072.
    20. Gomes, I.L.R. & Melicio, R. & Mendes, V.M.F. & Pousinho, H.M.I., 2019. "Decision making for sustainable aggregation of clean energy in day-ahead market: Uncertainty and risk," Renewable Energy, Elsevier, vol. 133(C), pages 692-702.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5760-:d:439521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.