IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5527-d432699.html
   My bibliography  Save this article

Performance of Communication Network for Monitoring Utility Scale Photovoltaic Power Plants

Author

Listed:
  • Ali M. Eltamaly

    (Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
    Department of Electrical Engineering, Mansoura University, Mansoura 35516, Egypt
    Saudi Electricity Company Chair in Power System Reliability and Security, King Saud University, Riyadh 11421, Saudi Arabia)

  • Mohamed A. Ahmed

    (Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
    Department of Communications and Electronics, Higher Institute of Engineering & Technology–King Marriott, Alexandria 23713, Egypt)

  • Majed A. Alotaibi

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Abdulrahman I. Alolah

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Young-Chon Kim

    (Department of Computer Engineering and Smart Grid Research Center, Jeonbuk National University, Jeonju 561-756, Korea)

Abstract

The grid integration of large scale photovoltaic (PV) power plants represents many challenging tasks for system stability, reliability and power quality due to the intermittent nature of solar radiation and the site accessibility issues where most PV power plants are located over a wide area. In order to enable real-time monitoring and control of large scale PV power plants, reliable two-way communications with low latency are required which provide accurate information for the electrical and environmental parameters as well as enabling the system operator to evaluate the overall performance and identify any abnormal conditions and faults. This work aims to design a communication network architecture for the remote monitoring of large-scale PV power plants based on the IEC 61850 Standard. The proposed architecture consists of three layers: the PV power system layer, the communication network layer, and the application layer. The PV power system layer consists of solar arrays, inverters, feeders, buses, a substation, and a control center. Monitoring parameters are classified into different categories including electrical measurements, status information, and meteorological data. This work considers the future plan of PV power plants in Saudi Arabia. In order to evaluate the performance of the communication network for local and remote monitoring, the OPNET Modeler is used for network modeling and simulation, and critical parameters such as network topology, link capacity, and latency are investigated and discussed. This work contributes to the design of reliable monitoring and communication of large-scale PV power plants.

Suggested Citation

  • Ali M. Eltamaly & Mohamed A. Ahmed & Majed A. Alotaibi & Abdulrahman I. Alolah & Young-Chon Kim, 2020. "Performance of Communication Network for Monitoring Utility Scale Photovoltaic Power Plants," Energies, MDPI, vol. 13(21), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5527-:d:432699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5527/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    2. José Miguel Paredes-Parra & Antonio Mateo-Aroca & Guillermo Silvente-Niñirola & María C. Bueso & Ángel Molina-García, 2018. "PV Module Monitoring System Based on Low-Cost Solutions: Wireless Raspberry Application and Assessment," Energies, MDPI, vol. 11(11), pages 1-20, November.
    3. Gallardo-Calles, Jose-Maria & Colmenar-Santos, Antonio & Ontañon-Ruiz, Javier & Castro-Gil, Manuel, 2013. "Wind control centres: State of the art," Renewable Energy, Elsevier, vol. 51(C), pages 93-100.
    4. José Miguel Paredes-Parra & Antonio Javier García-Sánchez & Antonio Mateo-Aroca & Ángel Molina-García, 2019. "An Alternative Internet-of-Things Solution Based on LoRa for PV Power Plants: Data Monitoring and Management," Energies, MDPI, vol. 12(5), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali M. Eltamaly & Majed A. Alotaibi & Abdulrahman I. Alolah & Mohamed A. Ahmed, 2021. "IoT-Based Hybrid Renewable Energy System for Smart Campus," Sustainability, MDPI, vol. 13(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco José Gimeno-Sales & Salvador Orts-Grau & Alejandro Escribá-Aparisi & Pablo González-Altozano & Ibán Balbastre-Peralta & Camilo Itzame Martínez-Márquez & María Gasque & Salvador Seguí-Chilet, 2020. "PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    2. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Shaheer Ansari & Afida Ayob & Molla S. Hossain Lipu & Mohamad Hanif Md Saad & Aini Hussain, 2021. "A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects," Sustainability, MDPI, vol. 13(15), pages 1-34, July.
    4. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    6. Mohamed A. Ahmed & Young-Chon Kim, 2014. "Hierarchical Communication Network Architectures for Offshore Wind Power Farms," Energies, MDPI, vol. 7(5), pages 1-18, May.
    7. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    8. Ali M. Eltamaly & M. S. Al-Saud & A. G. Abo-Khalil, 2020. "Performance Improvement of PV Systems’ Maximum Power Point Tracker Based on a Scanning PSO Particle Strategy," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    9. Mariusz T. Sarniak, 2020. "Researches of the Impact of the Nominal Power Ratio and Environmental Conditions on the Efficiency of the Photovoltaic System: A Case Study for Poland in Central Europe," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    10. Mohd Nasir Ayob & Valeria Castellucci & Johan Abrahamsson & Rafael Waters, 2019. "A Remotely Controlled Sea Level Compensation System for Wave Energy Converters," Energies, MDPI, vol. 12(10), pages 1-16, May.
    11. Zhi-Kai Fan & Kuo-Lung Lian & Jia-Fu Lin, 2023. "A New Golden Eagle Optimization with Stooping Behaviour for Photovoltaic Maximum Power Tracking under Partial Shading," Energies, MDPI, vol. 16(15), pages 1-19, July.
    12. Ali M. Eltamaly, 2021. "A Novel Strategy for Optimal PSO Control Parameters Determination for PV Energy Systems," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    13. Amor Hamied & Adel Mellit & Mohamed Benghanem & Sahbi Boubaker, 2023. "IoT-Based Low-Cost Photovoltaic Monitoring for a Greenhouse Farm in an Arid Region," Energies, MDPI, vol. 16(9), pages 1-21, April.
    14. Ali Abedaljabar Al-Samawi & Hafedh Trabelsi, 2022. "New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems," Energies, MDPI, vol. 15(16), pages 1-25, August.
    15. Isaías González & Antonio José Calderón & José María Portalo, 2021. "Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    16. Ioana-Monica Pop-Calimanu & Septimiu Lica & Sorin Popescu & Dan Lascu & Ioan Lie & Radu Mirsu, 2019. "A New Hybrid Inductor-Based Boost DC-DC Converter Suitable for Applications in Photovoltaic Systems," Energies, MDPI, vol. 12(2), pages 1-32, January.
    17. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    18. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    19. Matej Bereš & Dobroslav Kováč & Tibor Vince & Irena Kováčová & Ján Molnár & Iveta Tomčíková & Jozef Dziak & Patrik Jacko & Branislav Fecko & Šimon Gans, 2021. "Efficiency Enhancement of Non-Isolated DC-DC Interleaved Buck Converter for Renewable Energy Sources," Energies, MDPI, vol. 14(14), pages 1-15, July.
    20. Dalibor Dobrilovic & Jasmina Pekez & Eleonora Desnica & Ljiljana Radovanovic & Ivan Palinkas & Milica Mazalica & Luka Djordjević & Sinisa Mihajlovic, 2023. "Data Acquisition for Estimating Energy-Efficient Solar-Powered Sensor Node Performance for Usage in Industrial IoT," Sustainability, MDPI, vol. 15(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5527-:d:432699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.