IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5418-d429315.html
   My bibliography  Save this article

The Ångström–Prescott Regression Coefficients for Six Climatic Zones in South Africa

Author

Listed:
  • Brighton Mabasa

    (Research & Development Division, South African Weather Service, Pretoria 0001, South Africa
    Department of Physics, University of South Africa, UNISA Preller Street, Muckleneuk, Pretoria 0001, South Africa)

  • Meena D. Lysko

    (Department of Physics, University of South Africa, UNISA Preller Street, Muckleneuk, Pretoria 0001, South Africa
    Move Beyond Consulting (Pty) Ltd., Pretoria 0001, South Africa)

  • Henerica Tazvinga

    (Research & Development Division, South African Weather Service, Pretoria 0001, South Africa)

  • Sophie T. Mulaudzi

    (Department of Physics, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou 0950, South Africa)

  • Nosipho Zwane

    (Research & Development Division, South African Weather Service, Pretoria 0001, South Africa)

  • Sabata J. Moloi

    (Department of Physics, University of South Africa, UNISA Preller Street, Muckleneuk, Pretoria 0001, South Africa)

Abstract

The South African Weather Service (SAWS) manages an in situ solar irradiance radiometric network of 13 stations and a very dense sunshine recording network, located in all six macroclimate zones of South Africa. A sparsely distributed radiometric network over a landscape with dynamic climate and weather shifts is inadequate for solar energy studies and applications. Therefore, there is a need to develop mathematical models to estimate solar irradiation for a multitude of diverse climates. In this study, the annual regression coefficients, a and b , of the Ångström–Prescott (AP) model, which can be used to estimate global horizontal irradiance ( GHI ) from observed sunshine hours, were calibrated and validated with observed station data. The AP regression coefficients were calibrated and validated for each of the six macroclimate zones of South Africa using the observation data that span 2013 to 2019. The predictive effectiveness of the calibrated AP model coefficients was evaluated by comparing estimated and observed daily GHI . The maximum annual relative Mean Bias Error ( rMBE ) was 0.371%, relative Mean Absolute Error ( rMAE ) was 0.745%, relative Root Mean Square Error ( rRMSE ) was 0.910%, and the worst-case correlation coefficient (R 2 ) was 0.910. The statistical validation metrics results show that there is a strong correlation and linear relation between observed and estimated GHI values. The AP model coefficients calculated in this study can be used with quantitative confidence in estimating daily GHI data at locations in South Africa where daily observation sunshine duration data are available.

Suggested Citation

  • Brighton Mabasa & Meena D. Lysko & Henerica Tazvinga & Sophie T. Mulaudzi & Nosipho Zwane & Sabata J. Moloi, 2020. "The Ångström–Prescott Regression Coefficients for Six Climatic Zones in South Africa," Energies, MDPI, vol. 13(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5418-:d:429315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garg, H.P. & Garg, S.N., 1993. "Measurement of solar radiation—II. calibration and standardization," Renewable Energy, Elsevier, vol. 3(4), pages 335-348.
    2. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    3. Almorox, J. & Benito, M. & Hontoria, C., 2005. "Estimation of monthly Angström–Prescott equation coefficients from measured daily data in Toledo, Spain," Renewable Energy, Elsevier, vol. 30(6), pages 931-936.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brighton Mabasa & Meena D. Lysko & Henerica Tazvinga & Nosipho Zwane & Sabata J. Moloi, 2021. "The Performance Assessment of Six Global Horizontal Irradiance Clear Sky Models in Six Climatological Regions in South Africa," Energies, MDPI, vol. 14(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    2. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    3. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    4. Halawa, Edward & GhaffarianHoseini, AmirHosein & Hin Wa Li, Danny, 2014. "Empirical correlations as a means for estimating monthly average daily global radiation: A critical overview," Renewable Energy, Elsevier, vol. 72(C), pages 149-153.
    5. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    6. Paulescu, M. & Stefu, N. & Calinoiu, D. & Paulescu, E. & Pop, N. & Boata, R. & Mares, O., 2016. "Ångström–Prescott equation: Physical basis, empirical models and sensitivity analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 495-506.
    7. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.
    8. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    9. Lam, Joseph C. & Wan, Kevin K.W. & Lau, Chris C.S. & Yang, Liu, 2008. "Climatic influences on solar modelling in China," Renewable Energy, Elsevier, vol. 33(7), pages 1591-1604.
    10. Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.
    11. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    12. Muhammad Umar Afzaal & Intisar Ali Sajjad & Ahmed Bilal Awan & Kashif Nisar Paracha & Muhammad Faisal Nadeem Khan & Abdul Rauf Bhatti & Muhammad Zubair & Waqas ur Rehman & Salman Amin & Shaikh Saaqib , 2020. "Probabilistic Generation Model of Solar Irradiance for Grid Connected Photovoltaic Systems Using Weibull Distribution," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    13. Enrique A. Enríquez-Velásquez & Victor H. Benitez & Sergey G. Obukhov & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos, 2020. "Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study," Energies, MDPI, vol. 13(24), pages 1-41, December.
    14. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    15. Bakirci, Kadir, 2009. "Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey," Energy, Elsevier, vol. 34(4), pages 485-501.
    16. Marsz Andrzej A. & Styszyńska Anna & Bryś Krystyna & Bryś Tadeusz, 2021. "Role of Internal Variability of Climate System in Increase of Air Temperature in Wrocław (Poland) in the Years 1951–2018," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 109-124, September.
    17. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.
    18. Almorox, Javier & Arnaldo, J.A. & Bailek, Nadjem & Martí, Pau, 2020. "Adjustment of the Angstrom-Prescott equation from Campbell-Stokes and Kipp-Zonen sunshine measures at different timescales in Spain," Renewable Energy, Elsevier, vol. 154(C), pages 337-350.
    19. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    20. Chang, Kai & Zhang, Qingyuan, 2019. "Improvement of the hourly global solar model and solar radiation for air-conditioning design in China," Renewable Energy, Elsevier, vol. 138(C), pages 1232-1238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5418-:d:429315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.