IDEAS home Printed from https://ideas.repec.org/a/vrs/quageo/v40y2021i3p109-124n10.html
   My bibliography  Save this article

Role of Internal Variability of Climate System in Increase of Air Temperature in Wrocław (Poland) in the Years 1951–2018

Author

Listed:
  • Marsz Andrzej A.

    (Polish Geophysical Society, Baltic Branch, Gdynia, Poland)

  • Styszyńska Anna

    (Association of Polish Climatologists, Warszawa, Poland)

  • Bryś Krystyna

    (Institute of Environmental Protection and Development, Wroclaw University of Environmental and Life Science, Wrocław, Poland)

  • Bryś Tadeusz

    (Polish Geophysical Society, Wrocław Division, Wrocław, Poland)

Abstract

In the course of analysing the annual air temperature in Wrocław (TWr), a rapid change of the thermal regime was found between 1987 and 1989. TWr increased by >1°C, a strong, statistically significant positive trend emerged. The analysis of processes showed that strong warming in the cold season of the year (December–March) occurred as a result of an increase in the NAO intensity and warming in the warm season because of increased sunshine duration in Wrocław (ShWr). Multiple regression analysis has shown that the winter NAO Hurrell's index explains 15% of TWr variance, and the ShWr of the long-day (April–August) period 49%, whereas radiative forcing 5.9%. This indicates that the factors incidental to the internal variability of the climate system explain 64% of the TWr variability and the effect of increased CO2 concentration only ~6%. The reason for this rapid change of the thermal regime was a radical change in macro-circulation conditions in the Atlantic-European circular sector, which took place between 1988 and 1989. The heat, which is the cause of warming in Wrocław, comes from an increase in solar energy inflow (April–August) and also is transported to Europe from the North Atlantic surface by atmospheric circulation (NAO). These results indicate that the role of CO2 in shaping the contemporary temperature increase is overestimated, whereas the internal variability of the climate system is underestimated.

Suggested Citation

  • Marsz Andrzej A. & Styszyńska Anna & Bryś Krystyna & Bryś Tadeusz, 2021. "Role of Internal Variability of Climate System in Increase of Air Temperature in Wrocław (Poland) in the Years 1951–2018," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 109-124, September.
  • Handle: RePEc:vrs:quageo:v:40:y:2021:i:3:p:109-124:n:10
    DOI: 10.2478/quageo-2021-0027
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/quageo-2021-0027
    Download Restriction: no

    File URL: https://libkey.io/10.2478/quageo-2021-0027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    2. Bartosz Czernecki & Arkadiusz Głogowski & Jakub Nowosad, 2020. "Climate: An R Package to Access Free In-Situ Meteorological and Hydrological Datasets For Environmental Assessment," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    2. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.
    3. Muhammad Umar Afzaal & Intisar Ali Sajjad & Ahmed Bilal Awan & Kashif Nisar Paracha & Muhammad Faisal Nadeem Khan & Abdul Rauf Bhatti & Muhammad Zubair & Waqas ur Rehman & Salman Amin & Shaikh Saaqib , 2020. "Probabilistic Generation Model of Solar Irradiance for Grid Connected Photovoltaic Systems Using Weibull Distribution," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    4. Enrique A. Enríquez-Velásquez & Victor H. Benitez & Sergey G. Obukhov & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos, 2020. "Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study," Energies, MDPI, vol. 13(24), pages 1-41, December.
    5. Chang, Kai & Zhang, Qingyuan, 2019. "Improvement of the hourly global solar model and solar radiation for air-conditioning design in China," Renewable Energy, Elsevier, vol. 138(C), pages 1232-1238.
    6. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    7. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    8. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    9. Lin, Aiwen & Zou, Ling & Wang, Lunche & Gong, Wei & Zhu, Hongji & Salazar, Germán Ariel, 2016. "Estimation of atmospheric turbidity coefficient β over Zhengzhou, China during 1961–2013 using an improved hybrid model," Renewable Energy, Elsevier, vol. 86(C), pages 1134-1144.
    10. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    11. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    12. Anagnostopoulos, Argyrios & Sebastia-Saez, Daniel & Campbell, Alasdair N. & Arellano-Garcia, Harvey, 2020. "Finite element modelling of the thermal performance of salinity gradient solar ponds," Energy, Elsevier, vol. 203(C).
    13. Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    14. Rao K, D.V. Siva Krishna & Premalatha, M. & Naveen, C., 2018. "Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 248-258.
    15. Potić, Ivan & Golić, Rajko & Joksimović, Tatjana, 2016. "Analysis of insolation potential of Knjaževac Municipality (Serbia) using multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 235-245.
    16. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    17. Olatomiwa, Lanre & Mekhilef, Saad & Shamshirband, Shahaboddin & Petković, Dalibor, 2015. "Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1784-1791.
    18. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    19. Ozoegwu, Chigbogu G. & Akpan, Patrick U., 2021. "A review and appraisal of Nigeria's solar energy policy objectives and strategies against the backdrop of the renewable energy policy of the Economic Community of West African States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Rivero, M. & Orozco, S. & Sellschopp, F.S. & Loera-Palomo, R., 2017. "A new methodology to extend the validity of the Hargreaves-Samani model to estimate global solar radiation in different climates: Case study Mexico," Renewable Energy, Elsevier, vol. 114(PB), pages 1340-1352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:quageo:v:40:y:2021:i:3:p:109-124:n:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.