IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5185-d423952.html
   My bibliography  Save this article

Analysis of AMI Communication Methods in Various Field Environments

Author

Listed:
  • Dong Sik Kim

    (Department of Electronics Engineering, Hankuk University of Foreign Studies, Yongin-si, Gyeonggi-do 17035, Korea)

  • Beom Jin Chung

    (Research Center for Electrical and Information Technology, Seoul National University of Science & Technology, Seoul 01811, Korea)

  • Young Mo Chung

    (Department of Electronics and Information Engineering, Hansung University, Seoul 02876, Korea)

Abstract

In order to construct an efficient on-site communication network for an advanced metering infrastructure (AMI) in Korea, the high-speed power line communication (HS PLC), wireless smart utility network (Wi-SUN), and ZigBee modems are currently being used. In this paper, we first quantitatively analyze the communication performances of HS PLC, Wi-SUN, and ZigBee modems for AMI through both experimental testbeds and practical environment sites. For practical AMI sites, we selected 18 sites with 48 measurement points and classified the sites into five areas, and conducted measurements of signal and noise power spectra on the sites. We then derived linear regression models for received powers according to areas. Through the constructed models, we can efficiently choose an appropriate communication method and plan a methodology for building an AMI network depending on the area type. Furthermore, using the constructed regression models, we provided graphical simulation tools of received powers for both PLC and wireless communication methods based on a distribution information map.

Suggested Citation

  • Dong Sik Kim & Beom Jin Chung & Young Mo Chung, 2020. "Analysis of AMI Communication Methods in Various Field Environments," Energies, MDPI, vol. 13(19), pages 1-30, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5185-:d:423952
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharma, Konark & Mohan Saini, Lalit, 2015. "Performance analysis of smart metering for smart grid: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 720-735.
    2. Noelia Uribe-Pérez & Itziar Angulo & David De la Vega & Txetxu Arzuaga & Igor Fernández & Amaia Arrinda, 2017. "Smart Grid Applications for a Practical Implementation of IP over Narrowband Power Line Communications," Energies, MDPI, vol. 10(11), pages 1-16, November.
    3. Jianhua Zhang & Adarsh Hasandka & Jin Wei & S. M. Shafiul Alam & Tarek Elgindy & Anthony R. Florita & Bri-Mathias Hodge, 2018. "Hybrid Communication Architectures for Distributed Smart Grid Applications," Energies, MDPI, vol. 11(4), pages 1-16, April.
    4. Dong Sik Kim & Beom Jin Chung & Young Mo Chung, 2019. "Statistical Learning for Service Quality Estimation in Broadband PLC AMI," Energies, MDPI, vol. 12(4), pages 1-20, February.
    5. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong Sik Kim & Wookyung Jung & Beom Jin Chung, 2021. "Analysis of the Electricity Supply Contracts for Medium-Voltage Apartments in the Republic of Korea," Energies, MDPI, vol. 14(2), pages 1-17, January.
    2. Natthanan Tangsunantham & Chaiyod Pirak, 2022. "Experimental Performance Analysis of Wi-SUN Channel Modelling Applied to Smart Grid Applications," Energies, MDPI, vol. 15(7), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Artale & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Riccardo Fiorelli & Salvatore Guaiana & Nicola Panzavecchia & Giovanni Tinè, 2019. "A New Coupling Solution for G3-PLC Employment in MV Smart Grids," Energies, MDPI, vol. 12(13), pages 1-23, June.
    2. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.
    3. Pereira, Guillermo Ivan & Specht, Jan Martin & Silva, Patrícia Pereira & Madlener, Reinhard, 2018. "Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making," Energy Policy, Elsevier, vol. 121(C), pages 426-440.
    4. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    5. Masood, Bilal & Baig, Sobia, 2016. "Standardization and deployment scenario of next generation NB-PLC technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1033-1047.
    6. Artur Felipe da Silva Veloso & José Valdemir Reis Júnior & Ricardo de Andrade Lira Rabelo & Jocines Dela-flora Silveira, 2021. "HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service," Future Internet, MDPI, vol. 13(11), pages 1-45, October.
    7. Grzegorz Debita & Przemysław Falkowski-Gilski & Marcin Habrych & Grzegorz Wiśniewski & Bogdan Miedziński & Przemysław Jedlikowski & Agnieszka Waniewska & Jan Wandzio & Bartosz Polnik, 2020. "BPL-PLC Voice Communication System for the Oil and Mining Industry," Energies, MDPI, vol. 13(18), pages 1-19, September.
    8. Abduselam Hamid Beshir & Simone Negri & Xinglong Wu & Xiaokang Liu & Lu Wan & Giordano Spadacini & Sergio Amedeo Pignari & Flavia Grassi, 2023. "Behavioral Model of G3-Powerline Communication Modems for EMI Analysis," Energies, MDPI, vol. 16(8), pages 1-15, April.
    9. Ying-Ren Chien & Hao-Chun Yu, 2019. "Mitigating Impulsive Noise for Wavelet-OFDM Powerline Communication," Energies, MDPI, vol. 12(8), pages 1-13, April.
    10. Muhammad Awais Shahid & Fiaz Ahmad & Fahad R. Albogamy & Ghulam Hafeez & Zahid Ullah, 2022. "Detection and Prevention of False Data Injection Attacks in the Measurement Infrastructure of Smart Grids," Sustainability, MDPI, vol. 14(11), pages 1-25, May.
    11. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    12. Goran Petrovic & Juraj Alojzije Bosnic & Goran Majic & Marin Despalatovic, 2019. "A Design of PWM Controlled Calibrator of Non-Sinusoidal Voltage Waveforms," Energies, MDPI, vol. 12(10), pages 1-14, May.
    13. Nguyen, Hieu Trung & Battula, Swathi & Takkala, Rohit Reddy & Wang, Zhaoyu & Tesfatsion, Leigh S., 2018. "Transactive Energy Design for Integrated Transmission and Distribution Systems," ISU General Staff Papers 201802280800001000, Iowa State University, Department of Economics.
    14. Baloglu, Ulas Baran & Demir, Yakup, 2018. "Lightweight privacy-preserving data aggregation scheme for smart grid metering infrastructure protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 16-24.
    15. Ponce, Pedro & Polasko, Kenneth & Molina, Arturo, 2016. "End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 587-598.
    16. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    17. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    18. Hussain, Shahbaz & Hernandez Fernandez, Javier & Al-Ali, Abdulla Khalid & Shikfa, Abdullatif, 2021. "Vulnerabilities and countermeasures in electrical substations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    19. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    20. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5185-:d:423952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.