IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p4996-d417854.html
   My bibliography  Save this article

Design and Installation of 500-kW Floating Photovoltaic Structures Using High-Durability Steel

Author

Listed:
  • Sun-Hee Kim

    (Department of Architectural Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Korea)

  • Seung-Cheol Baek

    (Department of Civil Engineering, Andong National University, 1375 Gyeongdong-ro (SongCheon-dong), Andong 36729, Korea)

  • Ki-Bong Choi

    (Department of Architectural Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Korea)

  • Sung-Jin Park

    (Department of Urban Construction Engineering, Incheon National University, (Song-do) 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea)

Abstract

Countries around the world are expanding their investment in the new and renewable energy industry for strengthening energy security, improving air pollution, responding to climate change, and tackling energy poverty. In Korea, with the nuclear phase-out declaration in 2017, the government has announced a policy to expand the ratio of new and renewable energy from 4.7% to 20% by 2030. This study examines a floating photovoltaic power generation system, which is a new and renewable energy source. A structure composed of high-durability steel with excellent corrosion resistance and durability was designed for constructing and installing a 500-kW-class floating photovoltaic power generation structure. In addition, the safety of the structure was verified through finite element analysis. By reviewing the safety of the structure with respect to the wave height, the behavior of the structure was confirmed through the design wave height formula proposed in the domestic standard. The verification result confirms that the stress is within the allowable design limit. Moreover, the energy production of the floating photovoltaic generation system was measured and compared with that of a terrestrial photovoltaic generation system, and that of the former was shown to be 10% higher than that of the latter.

Suggested Citation

  • Sun-Hee Kim & Seung-Cheol Baek & Ki-Bong Choi & Sung-Jin Park, 2020. "Design and Installation of 500-kW Floating Photovoltaic Structures Using High-Durability Steel," Energies, MDPI, vol. 13(19), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:4996-:d:417854
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/4996/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/4996/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun-Hee Kim & Soon-Jong Yoon & Wonchang Choi, 2017. "Design and Construction of 1 MW Class Floating PV Generation Structural System Using FRP Members," Energies, MDPI, vol. 10(8), pages 1-14, August.
    2. Cazzaniga, R. & Cicu, M. & Rosa-Clot, M. & Rosa-Clot, P. & Tina, G.M. & Ventura, C., 2018. "Floating photovoltaic plants: Performance analysis and design solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1730-1741.
    3. Jung-Youl Choi & Seong-Tae Hwang & Sun-Hee Kim, 2020. "Evaluation of a 3.5-MW Floating Photovoltaic Power Generation System on a Thermal Power Plant Ash Pond," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    4. Dai, Jian & Zhang, Chi & Lim, Han Vincent & Ang, Kok Keng & Qian, Xudong & Wong, Johnny Liang Heng & Tan, Sze Tiong & Wang, Chien Looi, 2020. "Design and construction of floating modular photovoltaic system for water reservoirs," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maja Muftić Dedović & Samir Avdaković & Adnan Mujezinović & Nedis Dautbašić, 2020. "Integration of PV into the Sarajevo Canton Energy System-Air Quality and Heating Challenges," Energies, MDPI, vol. 14(1), pages 1-28, December.
    2. Thi Thu Em Vo & Hyeyoung Ko & Junho Huh & Namje Park, 2021. "Overview of Possibilities of Solar Floating Photovoltaic Systems in the OffShore Industry," Energies, MDPI, vol. 14(21), pages 1-30, October.
    3. Sharmarke Hassan & Mahmoud Dhimish, 2022. "Review of Current State-of-the-Art Research on Photovoltaic Soiling, Anti-Reflective Coating, and Solar Roads Deployment Supported by a Pilot Experiment on a PV Road," Energies, MDPI, vol. 15(24), pages 1-24, December.
    4. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    5. Md. Imamul Islam & Mohd Shawal Jadin & Ahmed Al Mansur & Nor Azwan Mohamed Kamari & Taskin Jamal & Molla Shahadat Hossain Lipu & Mohd Nurulakla Mohd Azlan & Mahidur R. Sarker & A. S. M. Shihavuddin, 2023. "Techno-Economic and Carbon Emission Assessment of a Large-Scale Floating Solar PV System for Sustainable Energy Generation in Support of Malaysia’s Renewable Energy Roadmap," Energies, MDPI, vol. 16(10), pages 1-32, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Md. Imamul Islam & Mohd Shawal Jadin & Ahmed Al Mansur & Nor Azwan Mohamed Kamari & Taskin Jamal & Molla Shahadat Hossain Lipu & Mohd Nurulakla Mohd Azlan & Mahidur R. Sarker & A. S. M. Shihavuddin, 2023. "Techno-Economic and Carbon Emission Assessment of a Large-Scale Floating Solar PV System for Sustainable Energy Generation in Support of Malaysia’s Renewable Energy Roadmap," Energies, MDPI, vol. 16(10), pages 1-32, May.
    3. Choi, Seok Min & Park, Chang-Dae & Cho, Sung-Hoon & Lim, Byung-Ju, 2022. "Effects of wind loads on the solar panel array of a floating photovoltaic system – Experimental study and economic analysis," Energy, Elsevier, vol. 256(C).
    4. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    5. Benjamins, Steven & Williamson, Benjamin & Billing, Suzannah-Lynn & Yuan, Zhiming & Collu, Maurizio & Fox, Clive & Hobbs, Laura & Masden, Elizabeth A. & Cottier-Cook, Elizabeth J. & Wilson, Ben, 2024. "Potential environmental impacts of floating solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Jung-Youl Choi & Seong-Tae Hwang & Sun-Hee Kim, 2020. "Evaluation of a 3.5-MW Floating Photovoltaic Power Generation System on a Thermal Power Plant Ash Pond," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    7. Tercan, Emre & Dereli, Mehmet Ali & Saracoglu, Burak Omer, 2022. "Location alternatives generation and elimination of floatovoltaics with virtual power plant designs," Renewable Energy, Elsevier, vol. 193(C), pages 1150-1163.
    8. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Lingjun Wang & Jian Chen, 2024. "Economic and Social Benefits of Aquavoltaics: A Case Study from Jiangsu, China," Sustainability, MDPI, vol. 16(20), pages 1-17, October.
    10. Rahaman, Md Atiqur & Chambers, Terrence L. & Fekih, Afef & Wiecheteck, Giovana & Carranza, Gabriel & Possetti, Gustavo Rafael Collere, 2023. "Floating photovoltaic module temperature estimation: Modeling and comparison," Renewable Energy, Elsevier, vol. 208(C), pages 162-180.
    11. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    12. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Exley, G. & Hernandez, R.R. & Page, T. & Chipps, M. & Gambro, S. & Hersey, M. & Lake, R. & Zoannou, K.-S. & Armstrong, A., 2021. "Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Alberto Ghigo & Emilio Faraggiana & Massimo Sirigu & Giuliana Mattiazzo & Giovanni Bracco, 2022. "Design and Analysis of a Floating Photovoltaic System for Offshore Installation: The Case Study of Lampedusa," Energies, MDPI, vol. 15(23), pages 1-30, November.
    15. Zeng, Fanxu & Bi, Cheng & Sree, Dharma & Huang, Guoxing & Zhang, Ningchuan & Law, Adrian Wing-Keung, 2023. "An Adaptive Barrier-Mooring System for Coastal Floating Solar Farms," Applied Energy, Elsevier, vol. 348(C).
    16. Vladan Durković & Željko Đurišić, 2017. "Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro," Energies, MDPI, vol. 10(10), pages 1-23, September.
    17. Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    18. Ascher, William, 2021. "Rescuing responsible hydropower projects," Energy Policy, Elsevier, vol. 150(C).
    19. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    20. Jangwon Suh & Yonghae Jang & Yosoon Choi, 2019. "Comparison of Electric Power Output Observed and Estimated from Floating Photovoltaic Systems: A Case Study on the Hapcheon Dam, Korea," Sustainability, MDPI, vol. 12(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:4996-:d:417854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.