IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4981-d417523.html
   My bibliography  Save this article

Parametric Design to Maximize Solar Irradiation and Minimize the Embodied GHG Emissions for a ZEB in Nordic and Mediterranean Climate Zones

Author

Listed:
  • Mattia Manni

    (Department of Engineering, CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, University of Perugia, 06125 Perugia, Italy)

  • Gabriele Lobaccaro

    (Department of Civil and Environmental Engineering, Faculty of Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Nicola Lolli

    (SINTEF Community—Architecture, Materials, and Structures, 7491 Trondheim, Norway)

  • Rolf Andre Bohne

    (Department of Civil and Environmental Engineering, Faculty of Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

Abstract

This work presents a validated workflow based on an algorithm developed in Grasshopper to parametrically control the building’s shape, by maximizing the solar irradiation incident on the building envelope and minimizing the embodied emissions. The algorithm is applied to a zero-emission building concept in Nordic and Mediterranean climate zones. The algorithm enables conducting both energy and environmental assessments through Ladybug tools. The emissions embodied in materials and the solar irradiation incident on the building envelope were estimated in the early design stage. A three-steps optimization process through evolutionary solvers, such as Galapagos (one-objective) and Octopus (multi-objective), has been conducted to shape the most environmentally responsive ZEB model in both climates. The results demonstrated the replicability of the algorithm to optimize the solar irradiation by producing an increment of solar incident irradiation equal to 35% in the Mediterranean area, and to 20% in the Nordic climate. This could contribute to compensate the additional 15% of emissions due to the higher quantities of employed materials in the optimized design. The developed approach, which is based on the parametric design principles for ZEBs, represents a support instrument for designers to develop highly efficient energy solutions in the early design stages.

Suggested Citation

  • Mattia Manni & Gabriele Lobaccaro & Nicola Lolli & Rolf Andre Bohne, 2020. "Parametric Design to Maximize Solar Irradiation and Minimize the Embodied GHG Emissions for a ZEB in Nordic and Mediterranean Climate Zones," Energies, MDPI, vol. 13(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4981-:d:417523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klitkou, Antje & Godoe, Helge, 2013. "The Norwegian PV manufacturing industry in a Triple Helix perspective," Energy Policy, Elsevier, vol. 61(C), pages 1586-1594.
    2. Kanters, Jouri & Wall, Maria, 2016. "A planning process map for solar buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 173-185.
    3. Claudia Terezinha Oliveira & Fernanda Antonio & Geraldo Francisco Burani & Miguel Edgar Morales Udaeta, 2017. "GHG reduction and energy efficiency analyses in a zero-energy solar house archetype," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(3), pages 225-232.
    4. Mohajeri, Nahid & Upadhyay, Govinda & Gudmundsson, Agust & Assouline, Dan & Kämpf, Jérôme & Scartezzini, Jean-Louis, 2016. "Effects of urban compactness on solar energy potential," Renewable Energy, Elsevier, vol. 93(C), pages 469-482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenhan Fan & Jiaqi Zhang & Jianliang Zhou & Chao Li & Jinxin Hu & Feixiang Hu & Zhibo Nie, 2023. "LCA and Scenario Analysis of Building Carbon Emission Reduction: The Influencing Factors of the Carbon Emission of a Photovoltaic Curtain Wall," Energies, MDPI, vol. 16(11), pages 1-21, June.
    2. Bushra, Nayab & Hartmann, Timo, 2024. "A method for design optimization of roof-integrated two-stage solar concentrators (TSSCs)," Applied Energy, Elsevier, vol. 353(PA).
    3. Mattia Manni & Franco Cotana, 2022. "Life Cycle Thinking a Sustainable Built Environment," Energies, MDPI, vol. 15(10), pages 1-2, May.
    4. Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "A method for global potential assessment of roof integrated two-stage solar concentrators (TSSCs) at district scale," Applied Energy, Elsevier, vol. 326(C).
    5. Bushra, Nayab, 2024. "A parametric modeling approach for the integrative design of solar façade and façade-integrated two-stage solar concentrators (TSSCs)," Applied Energy, Elsevier, vol. 375(C).
    6. Bushra, Nayab, 2025. "Parametric design of urban forms and building-integrated two-stage solar concentrators (TSSCs) to assess solar potential, daylight, and energy balance in various climates," Applied Energy, Elsevier, vol. 377(PA).
    7. Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    2. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    3. Kosorić, Vesna & Lau, Siu-Kit & Tablada, Abel & Lau, Stephen Siu-Yu, 2018. "General model of Photovoltaic (PV) integration into existing public high-rise residential buildings in Singapore – Challenges and benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 70-89.
    4. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    5. Wang, Yingli & Duan, Jialong & Zhao, Yuanyuan & He, Benlin & Tang, Qunwei, 2018. "Harvest rain energy by polyaniline-graphene composite films," Renewable Energy, Elsevier, vol. 125(C), pages 995-1002.
    6. Simone Giostra & Gabriele Masera & Rafaella Monteiro, 2022. "Solar Typologies: A Comparative Analysis of Urban Form and Solar Potential," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    7. Javier Domínguez & Carlo Bellini & Ana María Martín & Luis F. Zarzalejo, 2024. "Optimizing Solar Potential Analysis in Cuba: A Methodology for High-Resolution Regional Mapping," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    8. Osawa Hisato & Taro Mori & Kouichi Shinagawa & Satoshi Nakayama & Hayato Hosobuchi & Emad Mushtaha, 2023. "Risk Assessment of Heat Stroke during the Marathon of the Tokyo 2020 Olympics in Sapporo, Hokkaido," Sustainability, MDPI, vol. 15(5), pages 1-31, February.
    9. Marina Van Geenhuizen & Pieter Stek, 2015. "Mapping innovation in the global photovoltaic industry: a bibliometric approach to cluster identification and analysis," ERSA conference papers ersa15p697, European Regional Science Association.
    10. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    11. Mohajeri, Nahid & Assouline, Dan & Guiboud, Berenice & Bill, Andreas & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2018. "A city-scale roof shape classification using machine learning for solar energy applications," Renewable Energy, Elsevier, vol. 121(C), pages 81-93.
    12. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    13. Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Ashwini K. Aggarwal & Asif Ali Syed & Sandeep Garg, 2021. "Diffusion of RT Solar PV in Suburbs of Delhi/NCR, India: Triggers of Architect Recommendation Intent," Vision, , vol. 25(3), pages 285-299, September.
    15. Liao, Xuan & Zhu, Rui & Wong, Man Sing & Heo, Joon & Chan, P.W. & Kwok, Coco Yin Tung, 2023. "Fast and accurate estimation of solar irradiation on building rooftops in Hong Kong: A machine learning-based parameterization approach," Renewable Energy, Elsevier, vol. 216(C).
    16. Dan Zhu & Dexuan Song & Jie Shi & Jia Fang & Yili Zhou, 2020. "The Effect of Morphology on Solar Potential of High-Density Residential Area: A Case Study of Shanghai," Energies, MDPI, vol. 13(9), pages 1-17, May.
    17. Shirazi, Ali Mohammad & Zomorodian, Zahra S. & Tahsildoost, Mohammad, 2019. "Techno-economic BIPV evaluation method in urban areas," Renewable Energy, Elsevier, vol. 143(C), pages 1235-1246.
    18. Mohajeri, N. & Gudmundsson, A. & Kunckler, T. & Upadhyay, G. & Assouline, D. & Kämpf, J.H & Scartezzini, J.L., 2019. "A solar-based sustainable urban design: The effects of city-scale street-canyon geometry on solar access in Geneva, Switzerland," Applied Energy, Elsevier, vol. 240(C), pages 173-190.
    19. Kılkış, Şiir & Kılkış, Birol, 2019. "An urbanization algorithm for districts with minimized emissions based on urban planning and embodied energy towards net-zero exergy targets," Energy, Elsevier, vol. 179(C), pages 392-406.
    20. Bayón-Cueli, C. & Barbón, A. & Bayón, L. & Barbón, N., 2020. "A cost-energy based methodology for small-scale linear Fresnel reflectors on flat roofs of urban buildings," Renewable Energy, Elsevier, vol. 146(C), pages 944-959.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4981-:d:417523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.