IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4813-d413616.html
   My bibliography  Save this article

IoVT: Internet of Vulnerable Things? Threat Architecture, Attack Surfaces, and Vulnerabilities in Internet of Things and Its Applications towards Smart Grids

Author

Listed:
  • Pooja Anand

    (Department of Computer Science and Information Technology, Central University of Jammu, Jammu and Kashmir, Pin 181143, India)

  • Yashwant Singh

    (Department of Computer Science and Information Technology, Central University of Jammu, Jammu and Kashmir, Pin 181143, India)

  • Arvind Selwal

    (Department of Computer Science and Information Technology, Central University of Jammu, Jammu and Kashmir, Pin 181143, India)

  • Pradeep Kumar Singh

    (ABES Engineering College, Ghaziabad, Uttar Pradesh, Pin 201009, India)

  • Raluca Andreea Felseghi

    (Faculty of Electrical Engineering and Computer Science, “Ştefancel Mare” University of Suceava, 720229 Suceava, Romania)

  • Maria Simona Raboaca

    (National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Rm. Valcea, Uzinei Street, No. 4, P.O. Box 7 Raureni, 240050 Valcea, Romania)

Abstract

In recent years, people have witnessed numerous Internet of Things (IoT)-based attacks with the exponential increase in the number of IoT devices. Alongside this, the means to secure IoT-based applications are maturing slower than our budding dependence on them. Moreover, the vulnerabilities in an IoT system are exploited in chains to penetrate deep into the network and yield more adverse aftereffects. To mitigate these issues, this paper gives unique insights for handling the growing vulnerabilities in common IoT devices and proposes a threat architecture for IoT, addressing threats in the context of a three-layer IoT reference architecture. Furthermore, the vulnerabilities exploited at the several IoT attack surfaces and the challenges they exert are explored. Thereafter, the challenges in quantifying the IoT vulnerabilities with the existing framework are also analyzed. The study also covers a case study on the Intelligent Transportation System, covering road transport and traffic control specifically in terms of threats and vulnerabilities. Another case study on secure energy management in the Smart Grid is also presented. This case study covers the applications of Internet of Vulnerable Things (IoVT) in Smart energy Grid solutions, as there will be tremendous use of IoT in future Smart Grids to save energy and improve overall distribution. The analysis shows that the integration of the proposed architecture in existing applications alarms the developers about the embedded threats in the system.

Suggested Citation

  • Pooja Anand & Yashwant Singh & Arvind Selwal & Pradeep Kumar Singh & Raluca Andreea Felseghi & Maria Simona Raboaca, 2020. "IoVT: Internet of Vulnerable Things? Threat Architecture, Attack Surfaces, and Vulnerabilities in Internet of Things and Its Applications towards Smart Grids," Energies, MDPI, vol. 13(18), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4813-:d:413616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amit Sagu & Nasib Singh Gill & Preeti Gulia & Pradeep Kumar Singh & Wei-Chiang Hong, 2023. "Design of Metaheuristic Optimization Algorithms for Deep Learning Model for Secure IoT Environment," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    2. Jianguo Ding & Attia Qammar & Zhimin Zhang & Ahmad Karim & Huansheng Ning, 2022. "Cyber Threats to Smart Grids: Review, Taxonomy, Potential Solutions, and Future Directions," Energies, MDPI, vol. 15(18), pages 1-37, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacharjee, Vikram & Khan, Irfan, 2018. "A non-linear convex cost model for economic dispatch in microgrids," Applied Energy, Elsevier, vol. 222(C), pages 637-648.
    2. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    3. Jeziel Vázquez & Elias J. J. Rodriguez & Jaime Arau & Nimrod Vázquez, 2021. "A di/dt Detection Circuit for DC Unidirectional Breaker Based on Inductor Transient Behaviour," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    4. Huang, Pengluan & Hu, Guoqiang & Zhao, Xiaodong & Lu, Luyi & Ding, Honggang & Li, Jianlan, 2022. "Effect of organics on the adhesion of dust to PV panel surfaces under condensation," Energy, Elsevier, vol. 261(PB).
    5. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    6. Gonzalez de Durana, Jose & Barambones, Oscar, 2018. "Technology-free microgrid modeling with application to demand side management," Applied Energy, Elsevier, vol. 219(C), pages 165-178.
    7. Meisam Arabpour & Alimorad Khajehzadeh & Mehdi Jafari Shahbazzadeh & Mahdiyeh Eslami, 2024. "Parallel Mode Estimation Improvement in Power Networks based on Optimal ANFIS Approach," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 978-1001, November.
    8. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    9. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Xiao Qi & Yan Bai & Huanhuan Luo & Yiqing Zhang & Guiping Zhou & Zhonghua Wei, 2018. "Novel Distributed Optimal Control of Battery Energy Storage System in an Islanded Microgrid with Fast Frequency Recovery," Energies, MDPI, vol. 11(8), pages 1-18, July.
    11. Ruben Sánchez-Corcuera & Adrián Nuñez-Marcos & Jesus Sesma-Solance & Aritz Bilbao-Jayo & Rubén Mulero & Unai Zulaika & Gorka Azkune & Aitor Almeida, 2019. "Smart cities survey: Technologies, application domains and challenges for the cities of the future," International Journal of Distributed Sensor Networks, , vol. 15(6), pages 15501477198, June.
    12. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    13. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    14. Aqdas Naz & Muhammad Umar Javed & Nadeem Javaid & Tanzila Saba & Musaed Alhussein & Khursheed Aurangzeb, 2019. "Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids," Energies, MDPI, vol. 12(5), pages 1-30, March.
    15. Milis, Kevin & Peremans, Herbert & Van Passel, Steven, 2018. "Steering the adoption of battery storage through electricity tariff design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 125-139.
    16. Artur Felipe da Silva Veloso & José Valdemir Reis Júnior & Ricardo de Andrade Lira Rabelo & Jocines Dela-flora Silveira, 2021. "HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service," Future Internet, MDPI, vol. 13(11), pages 1-45, October.
    17. Arul Rajagopalan & Dhivya Swaminathan & Meshal Alharbi & Sudhakar Sengan & Oscar Danilo Montoya & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly, 2022. "Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods," Energies, MDPI, vol. 15(23), pages 1-18, November.
    18. Lucas Cuadra & Miguel Del Pino & José Carlos Nieto-Borge & Sancho Salcedo-Sanz, 2017. "Optimizing the Structure of Distribution Smart Grids with Renewable Generation against Abnormal Conditions: A Complex Networks Approach with Evolutionary Algorithms," Energies, MDPI, vol. 10(8), pages 1-31, July.
    19. Chen, Weidong & Zeng, Yu & Xu, Chongqing, 2019. "Energy storage subsidy estimation for microgrid: A real option game-theoretic approach," Applied Energy, Elsevier, vol. 239(C), pages 373-382.
    20. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4813-:d:413616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.