IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4131-d396883.html
   My bibliography  Save this article

Emerging Photovoltaic (PV) Materials for a Low Carbon Economy

Author

Listed:
  • Ilke Celik

    (Sustainability and Renewable Energy Systems Program, Department of Electrical and Computer Engineering, University of Wisconsin-Platteville, Platteville, WI 53818, USA)

  • Ramez Hosseinian Ahangharnejhad

    (Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606, USA)

  • Zhaoning Song

    (Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606, USA)

  • Michael Heben

    (Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606, USA)

  • Defne Apul

    (Department of Civil and Environmental Engineering, The University of Toledo, Toledo, OH 43606, USA)

Abstract

Emerging photovoltaic (PV) technologies have a potential to address the shortcomings of today’s energy market which heavily depends on the use of fossil fuels for electricity generation. We created inventories that offer insights into the environmental impacts and cost of all the materials used in emerging PV technologies, including perovskites, polymers, Cu 2 ZnSnS 4 (CZTS), carbon nanotubes (CNT), and quantum dots. The results show that the CO 2 emissions associated with the absorber layers are much less than the CO 2 emissions associated with the contact and charge selective layers. The CdS (charge selective layer) and ITO (contact layer) have the highest environmental impacts compared to Al 2 O 3 , CuI, CuSCN, MoO 3 , NiO, poly (3-hexylthiophene-2,5-diyl (P3HT)), phenyl-C61-butyric acid methyl ester (PCBM), poly polystyrene sulfonate (PEDOT:PSS), SnO 2 , spiro-OMeTAD, and TiO 2 (charge selective layers) and Al, Ag, Cu, FTO, Mo, ZnO:In, and ZnO/ZnO:Al (contact layers). The cost assessments show that the organic materials, such as polymer absorbers, CNT, P3HT and spiro-OMeTAD, are the most expensive materials. Inorganic materials would be more preferable to lower the cost of solar cells. All the remaining materials have a potential to be used in the commercial PV market. Finally, we analyzed the cost of PV materials based on their material intensity and CO2 emissions, and concluded that the perovskite absorber will be the most eco-efficient material that has the lowest cost and CO 2 emissions.

Suggested Citation

  • Ilke Celik & Ramez Hosseinian Ahangharnejhad & Zhaoning Song & Michael Heben & Defne Apul, 2020. "Emerging Photovoltaic (PV) Materials for a Low Carbon Economy," Energies, MDPI, vol. 13(16), pages 1-10, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4131-:d:396883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Annick Anctil & Vasilis Fthenakis, 2012. "Life Cycle Assessment of Organic Photovoltaics," Chapters, in: Vasilis Fthenakis (ed.), Third Generation Photovoltaics, IntechOpen.
    2. Collier, Jennifer & Wu, Susie & Apul, Defne, 2014. "Life cycle environmental impacts from CZTS (copper zinc tin sulfide) and Zn3P2 (zinc phosphide) thin film PV (photovoltaic) cells," Energy, Elsevier, vol. 74(C), pages 314-321.
    3. Steve Albrecht & Bernd Rech, 2017. "Perovskite solar cells: On top of commercial photovoltaics," Nature Energy, Nature, vol. 2(1), pages 1-2, January.
    4. Elizabeth Markert & Ilke Celik & Defne Apul, 2020. "Private and Externality Costs and Benefits of Recycling Crystalline Silicon (c-Si) Photovoltaic Panels," Energies, MDPI, vol. 13(14), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludwik Wicki & Robert Pietrzykowski & Dariusz Kusz, 2022. "Factors Determining the Development of Prosumer Photovoltaic Installations in Poland," Energies, MDPI, vol. 15(16), pages 1-19, August.
    2. Bart Roose, 2022. "Perovskite Solar Cells," Energies, MDPI, vol. 15(17), pages 1-3, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincenzo Muteri & Maurizio Cellura & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Marina Mistretta & Maria Laura Parisi, 2020. "Review on Life Cycle Assessment of Solar Photovoltaic Panels," Energies, MDPI, vol. 13(1), pages 1-38, January.
    2. Iliana Papamichael & Irene Voukkali & Mejdi Jeguirim & Nikolaos Argirusis & Salah Jellali & Georgia Sourkouni & Christos Argirusis & Antonis A. Zorpas, 2022. "End-of-Life Management and Recycling on PV Solar Energy Production," Energies, MDPI, vol. 15(17), pages 1-5, September.
    3. Krebs-Moberg, Miles & Pitz, Mandy & Dorsette, Tiara L. & Gheewala, Shabbir H., 2021. "Third generation of photovoltaic panels: A life cycle assessment," Renewable Energy, Elsevier, vol. 164(C), pages 556-565.
    4. Dias, Pablo R. & Schmidt, Lucas & Chang, Nathan L. & Monteiro Lunardi, Marina & Deng, Rong & Trigger, Blair & Bonan Gomes, Lucas & Egan, Renate & Veit, Hugo, 2022. "High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Islam, Md. Monirul & Sohag, Kazi & Hammoudeh, Shawkat & Mariev, Oleg & Samargandi, Nahla, 2022. "Minerals import demands and clean energy transitions: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
    6. Megan Belongeay & Gabriela Shirkey & Marina Monteiro Lunardi & Gonzalo Rodriguez-Garcia & Parikhit Sinha & Richard Corkish & Rodney A. Stewart & Annick Anctil & Jiquan Chen & Ilke Celik, 2023. "Photovoltaic Systems through the Lens of Material-Energy-Water Nexus," Energies, MDPI, vol. 16(7), pages 1-12, March.
    7. Saewhan Kim & Jonghun Park, 2020. "Comparative Life Cycle Assessment of Multiple Liquid Laundry Detergent Packaging Formats," Sustainability, MDPI, vol. 12(11), pages 1-13, June.
    8. Chelsea Schelly & Don Lee & Elise Matz & Joshua M. Pearce, 2021. "Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    9. Adrian Czajkowski & Agata Wajda & Nikolina Poranek & Shubhangi Bhadoria & Leszek Remiorz, 2022. "Prediction of the Market of End-of-Life Photovoltaic Panels in the Context of Common EU Management System," Energies, MDPI, vol. 16(1), pages 1-15, December.
    10. Pinto, Helen & Gates, Ian D., 2022. "Why is it so difficult to replace diesel in Nunavut, Canada?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Vishnu S Prabhu & Shraddha Shrivastava & Kakali Mukhopadhyay, 2022. "Life Cycle Assessment of Solar Photovoltaic in India: A Circular Economy Approach," Circular Economy and Sustainability, Springer, vol. 2(2), pages 507-534, June.
    12. Ganesan, Kishore & Valderrama, César, 2022. "Anticipatory life cycle analysis framework for sustainable management of end-of-life crystalline silicon photovoltaic panels," Energy, Elsevier, vol. 245(C).
    13. Resalati, Shahaboddin & Okoroafor, Tobechi & Maalouf, Amani & Saucedo, Edgardo & Placidi, Marcel, 2022. "Life cycle assessment of different chalcogenide thin-film solar cells," Applied Energy, Elsevier, vol. 313(C).
    14. Violeta Motuzienė & Kęstutis Čiuprinskas & Artur Rogoža & Vilūnė Lapinskienė, 2022. "A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies," Energies, MDPI, vol. 15(22), pages 1-26, November.
    15. Galyna Trypolska & Tetiana Kurbatova & Olha Prokopenko & Honorata Howaniec & Yuriy Klapkiv, 2022. "Wind and Solar Power Plant End-of-Life Equipment: Prospects for Management in Ukraine," Energies, MDPI, vol. 15(5), pages 1-15, February.
    16. Atif Ali & Theodore W. Koch & Timothy A. Volk & Robert W. Malmsheimer & Mark H. Eisenbies & Danielle Kloster & Tristan R. Brown & Nehan Naim & Obste Therasme, 2022. "The Environmental Life Cycle Assessment of Electricity Production in New York State from Distributed Solar Photovoltaic Systems," Energies, MDPI, vol. 15(19), pages 1-20, October.
    17. Choi, Chul Hun & Kim, Sang-Phil & Lee, Seokcheon & Zhao, Fu, 2020. "Game theoretic production decisions of by-product materials critical for clean energy technologies - Indium as a case study," Energy, Elsevier, vol. 203(C).
    18. Lunardi, Marina M. & Moore, Stephen & Alvarez-Gaitan, J.P. & Yan, Chang & Hao, Xiaojing & Corkish, Richard, 2018. "A comparative life cycle assessment of chalcogenide/Si tandem solar modules," Energy, Elsevier, vol. 145(C), pages 700-709.
    19. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4131-:d:396883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.