IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v207y2025ics1364032124007068.html
   My bibliography  Save this article

Methodological approaches for resource recovery from end-of-life panels of different generations of photovoltaic technologies – A review

Author

Listed:
  • Mukwevho, Nehemiah
  • Mkhohlakali, Andile
  • Ntsasa, Napo
  • Sehata, James
  • Chimuka, Luke
  • Tshilongo, James
  • Letsoalo, Mokgehle R.

Abstract

The rise in prominence of solar energy as a green technology demanded economical and sustainable waste management due to the anticipated surge of end-of-life panel waste streams. While there are many advantages to the increase in solar power output, end-of-life solar panels could become a source of hazardous waste. Therefore, the disposal of photovoltaic panels will become a major environmental concern in the next decades. Generations of photovoltaic technologies, namely crystalline silicon, thin-film, and third-generation solar panels, share the goal of achieving waste reduction through useful strategies for recovery of secondary raw materials from obsolete panels. This research reviews the current status and future prospects for valuable constituents, waste projections, and trends in technological advances for recycling and recovery of resource materials from different generations of photovoltaic solar systems. Projections of global photovoltaic waste driven by the expansion of solar system installations illuminate the influx of waste streams that burden the environment if there are no measures in place for sustainable waste management. The crystalline silicon and thin-film PV technologies have demonstrated sufficient advancements in resource recovery technologies for industrial use in circular economy and closed-loop recycling to minimize environmental impacts and prevent leaching of toxic elements. Industrial application of pyrolysis and chemical etching has emerged as a promising approach to recovery of high-purity secondary valuable materials from obsolete c-Si panels. Substantial recoveries of critical from obsolete thin-film panels are notable with the application of mechanical and hydrometallurgical waste treatment techniques. Third-generation waste treatment methods are largely based on laboratory experiments because these solar systems are on the verge of commercialization.

Suggested Citation

  • Mukwevho, Nehemiah & Mkhohlakali, Andile & Ntsasa, Napo & Sehata, James & Chimuka, Luke & Tshilongo, James & Letsoalo, Mokgehle R., 2025. "Methodological approaches for resource recovery from end-of-life panels of different generations of photovoltaic technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007068
    DOI: 10.1016/j.rser.2024.114980
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124007068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Mladen Bošnjaković & Mato Galović & Jasmin Kuprešak & Tomislav Bošnjaković, 2023. "The End of Life of PV Systems: Is Europe Ready for It?," Sustainability, MDPI, vol. 15(23), pages 1-22, November.
    3. Bo Chen & Chengbin Fei & Shangshang Chen & Hangyu Gu & Xun Xiao & Jinsong Huang, 2021. "Recycling lead and transparent conductors from perovskite solar modules," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Elizabeth Markert & Ilke Celik & Defne Apul, 2020. "Private and Externality Costs and Benefits of Recycling Crystalline Silicon (c-Si) Photovoltaic Panels," Energies, MDPI, vol. 13(14), pages 1-13, July.
    5. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
    6. Berger, Wolfgang & Simon, Franz-Georg & Weimann, Karin & Alsema, Erik A., 2010. "A novel approach for the recycling of thin film photovoltaic modules," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 711-718.
    7. Klugmann-Radziemska, Ewa & Ostrowski, Piotr, 2010. "Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules," Renewable Energy, Elsevier, vol. 35(8), pages 1751-1759.
    8. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    9. Ali Ghahremani & Scott D. Adams & Michael Norton & Sui Yang Khoo & Abbas Z. Kouzani, 2024. "Delamination Techniques of Waste Solar Panels: A Review," Clean Technol., MDPI, vol. 6(1), pages 1-19, February.
    10. Eva Gerold & Helmut Antrekowitsch, 2024. "Advancements and Challenges in Photovoltaic Cell Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    11. Mozaffari, Samaneh & Nateghi, Mohammad Reza & Zarandi, Mahmood Borhani, 2017. "An overview of the Challenges in the commercialization of dye sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 675-686.
    12. Garvin A. Heath & Timothy J. Silverman & Michael Kempe & Michael Deceglie & Dwarakanath Ravikumar & Timothy Remo & Hao Cui & Parikhit Sinha & Cara Libby & Stephanie Shaw & Keiichi Komoto & Karsten Wam, 2020. "Research and development priorities for silicon photovoltaic module recycling to support a circular economy," Nature Energy, Nature, vol. 5(7), pages 502-510, July.
    13. Marwede, Max & Berger, Wolfgang & Schlummer, Martin & Mäurer, Andreas & Reller, Armin, 2013. "Recycling paths for thin-film chalcogenide photovoltaic waste – Current feasible processes," Renewable Energy, Elsevier, vol. 55(C), pages 220-229.
    14. Lee, Taesoo D. & Ebong, Abasifreke U., 2017. "A review of thin film solar cell technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1286-1297.
    15. Amal Bouich & Inmaculada Guaita Pradas & Mehwish Aziz Khan & Yousaf Hameed Khattak, 2023. "Opportunities, Challenges, and Future Prospects of the Solar Cell Market," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    16. Nain, Preeti & Kumar, Arun, 2020. "Initial metal contents and leaching rate constants of metals leached from end-of-life solar photovoltaic waste: An integrative literature review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganesan, Kishore & Valderrama, César, 2022. "Anticipatory life cycle analysis framework for sustainable management of end-of-life crystalline silicon photovoltaic panels," Energy, Elsevier, vol. 245(C).
    2. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    3. Jain, Suresh & Sharma, Tanya & Gupta, Anil Kumar, 2022. "End-of-life management of solar PV waste in India: Situation analysis and proposed policy framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Aşkın, Asmin & Kılkış, Şiir & Akınoğlu, Bülent Gültekin, 2023. "Recycling photovoltaic modules within a circular economy approach and a snapshot for Türkiye," Renewable Energy, Elsevier, vol. 208(C), pages 583-596.
    5. Vishnu S Prabhu & Shraddha Shrivastava & Kakali Mukhopadhyay, 2022. "Life Cycle Assessment of Solar Photovoltaic in India: A Circular Economy Approach," Circular Economy and Sustainability, Springer, vol. 2(2), pages 507-534, June.
    6. Ana-María Diez-Suarez & Marta Martínez-Benavides & Cristina Manteca Donado & Jorge-Juan Blanes-Peiró & Elia Judith Martínez Torres, 2024. "Recycling of Silicon-Based Photovoltaic Modules: Mediterranean Region Insight," Energies, MDPI, vol. 17(23), pages 1-44, November.
    7. Wang, Chen & Feng, Kuishuang & Liu, Xi & Wang, Peng & Chen, Wei-Qiang & Li, Jiashuo, 2022. "Looming challenge of photovoltaic waste under China’s solar ambition: A spatial–temporal assessment," Applied Energy, Elsevier, vol. 307(C).
    8. Koo Lee & Sung Bae Cho & Junsin Yi & Hyo Sik Chang, 2022. "Simplified Recovery Process for Resistive Solder Bond (RSB) Hotspots Caused by Poor Soldering of Crystalline Silicon Photovoltaic Modules Using Resin," Energies, MDPI, vol. 15(13), pages 1-19, June.
    9. Omar H. AL-Zoubi & Moayyad Shawaqfah & Fares Almomani & Rebhi A. Damash & Kamel Al-Zboon, 2022. "Photovoltaic Solar Cells and Panels Waste in Jordan: Figures, Facts, and Concerns," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    10. Yan Li & Ge Wang & Bo Shen & Qi Zhang & Boyu Liu & Ruoxi Xu, 2021. "Conception and policy implications of photovoltaic modules end‐of‐life management in China," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(1), January.
    11. Van Opstal, Wim & Smeets, Anse, 2023. "When do circular business models resolve barriers to residential solar PV adoption? Evidence from survey data in flanders," Energy Policy, Elsevier, vol. 182(C).
    12. Souza, Vanessa & Rodrigues Figueiredo, Adriano Marcos & Santos Bortolocci Espejo, Márcia Maria dos, 2024. "Challenges and strategies for managing end-of-life photovoltaic equipment in Brazil: Learning from international experience," Energy Policy, Elsevier, vol. 188(C).
    13. Amjad Ali & Muhammad Shahid & Sikandar Abdul Qadir & Md Tasbirul Islam & Muhammad Waseem Khan & Shoaib Ahmed, 2024. "Solar PV End-of-Life Waste Recycling: An Assessment of Mechanical Recycling Methods and Proposed Hybrid Laser and High Voltage Pulse Crushing Method," Resources, MDPI, vol. 13(12), pages 1-29, November.
    14. Cucchiella, Federica & D׳Adamo, Idiano & Rosa, Paolo, 2015. "End-of-Life of used photovoltaic modules: A financial analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 552-561.
    15. Năstase, Gabriel & Șerban, Alexandru & Dragomir, George & Brezeanu, Alin Ionuț & Bucur, Irina, 2018. "Photovoltaic development in Romania. Reviewing what has been done," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 523-535.
    16. Aleksandra Ziemińska-Stolarska & Monika Pietrzak & Ireneusz Zbiciński, 2023. "Effect of Recycling on the Environmental Impact of a High-Efficiency Photovoltaic Module Combining Space-Grade Solar Cells and Optical Micro-Tracking," Energies, MDPI, vol. 16(8), pages 1-13, April.
    17. Kang, Sukmin & Yoo, Sungyeol & Lee, Jina & Boo, Bonghyun & Ryu, Hojin, 2012. "Experimental investigations for recycling of silicon and glass from waste photovoltaic modules," Renewable Energy, Elsevier, vol. 47(C), pages 152-159.
    18. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    19. Domínguez, Adriana & Geyer, Roland, 2019. "Photovoltaic waste assessment of major photovoltaic installations in the United States of America," Renewable Energy, Elsevier, vol. 133(C), pages 1188-1200.
    20. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.