IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4114-d396584.html
   My bibliography  Save this article

A Comparative Economic Feasibility Study of Photovoltaic Heat Pump Systems for Industrial Space Heating and Cooling

Author

Listed:
  • Celena Lorenzo

    (Instituto de Energía Solar—Universidad Politécnica de Madrid, 28031 Madrid, Spain)

  • Luis Narvarte

    (Instituto de Energía Solar—Universidad Politécnica de Madrid, 28031 Madrid, Spain)

  • Ana Belén Cristóbal

    (Instituto de Energía Solar—Universidad Politécnica de Madrid, 28031 Madrid, Spain)

Abstract

The use of photovoltaic (PV) systems for powering heat pumps (HP) leads to an economic, energy efficient and environmentally friendly alternative for heating and cooling generation. A technical solution developed by the authors permits stand-alone configurations to operate without batteries, mitigating up to 75% of the solar power fluctuations resulting from cloud-passing. Once its technical feasibility has been demonstrated, the economic potential of this innovative solution should be assessed (avoiding a battery system is a significant advantage). This paper presents a comparative economic assessment of this autonomous (AU) solution and a self-consumption (SC) solution, that would substitute a grid-powered HP system for the space heating and cooling of two livestock farms located in Spain. Results show that PV-HP systems are economically feasible regardless of the technical solution: the Profitability Index ( PI ) is in the 2.23–2.97 €/€ range, the Internal Rate of Return ( IRR ) is in the 8.1–10.9% range, the Payback Period ( PBP ) is in the 9.2–11 years range and the savings in terms of the Levelized Cost of Energy ( LCOE ) are in the 57–70% range. The AU solution offers a higher economic profitability, because it permits larger savings in the electricity bill. The SC solution presents lower LCOE s because of its greater electricity production.

Suggested Citation

  • Celena Lorenzo & Luis Narvarte & Ana Belén Cristóbal, 2020. "A Comparative Economic Feasibility Study of Photovoltaic Heat Pump Systems for Industrial Space Heating and Cooling," Energies, MDPI, vol. 13(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4114-:d:396584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carrêlo, Isaac Barata & Almeida, Rita Hogan & Narvarte, Luis & Martinez-Moreno, Francisco & Carrasco, Luis Miguel, 2020. "Comparative analysis of the economic feasibility of five large-power photovoltaic irrigation systems in the Mediterranean region," Renewable Energy, Elsevier, vol. 145(C), pages 2671-2682.
    2. Lorenzo, C. & Almeida, R.H. & Martínez-Núñez, M. & Narvarte, L. & Carrasco, L.M., 2018. "Economic assessment of large power photovoltaic irrigation systems in the ECOWAS region," Energy, Elsevier, vol. 155(C), pages 992-1003.
    3. Li, Y. & Zhao, B.Y. & Zhao, Z.G. & Taylor, R.A. & Wang, R.Z., 2018. "Performance study of a grid-connected photovoltaic powered central air conditioner in the South China climate," Renewable Energy, Elsevier, vol. 126(C), pages 1113-1125.
    4. Romaní, Joaquim & Belusko, Martin & Alemu, Alemu & Cabeza, Luisa F. & de Gracia, Alvaro & Bruno, Frank, 2018. "Control concepts of a radiant wall working as thermal energy storage for peak load shifting of a heat pump coupled to a PV array," Renewable Energy, Elsevier, vol. 118(C), pages 489-501.
    5. Giuseppe Todde & Lelia Murgia & Isaac Carrelo & Rita Hogan & Antonio Pazzona & Luigi Ledda & Luis Narvarte, 2018. "Embodied Energy and Environmental Impact of Large-Power Stand-Alone Photovoltaic Irrigation Systems," Energies, MDPI, vol. 11(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Tinti & Patrizia Tassinari & Dimitra Rapti & Stefano Benni, 2023. "Development of a Pilot Borehole Storage System of Solar Thermal Energy: Modeling, Design, and Installation," Sustainability, MDPI, vol. 15(9), pages 1-25, April.
    2. Mariusz Niekurzak & Wojciech Lewicki & Wojciech Drożdż & Paweł Miązek, 2022. "Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household," Energies, MDPI, vol. 15(16), pages 1-20, August.
    3. Mariam, Ezrah & Ramasubramanian, Brindha & Sumedha Reddy, Vundrala & Dalapati, Goutam Kumar & Ghosh, Siddhartha & PA, Thanseeha Sherin & Chakrabortty, Sabyasachi & Motapothula, Mallikarjuna Rao & Kuma, 2024. "Emerging trends in cooling technologies for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Quijano & Celena Lorenzo & Luis Narvarte, 2023. "Economic Assessment of a PV-HP System for Drying Alfalfa in The North of Spain," Energies, MDPI, vol. 16(8), pages 1-19, April.
    2. Fethi Khlifi & Habib Cherif & Jamel Belhadj, 2021. "Environmental and Economic Optimization and Sizing of a Micro-Grid with Battery Storage for an Industrial Application," Energies, MDPI, vol. 14(18), pages 1-17, September.
    3. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    4. Wang, Kai & Peng, Jinqing & Li, Sihui & Li, Houpei & Zou, Bin & Ma, Tao & Ji, Jie, 2024. "Compressor speed control for optimizing energy matching of PV-driven AC systems during the cooling season," Energy, Elsevier, vol. 298(C).
    5. Gökay Bayrak & Davut Ertekin & Hassan Haes Alhelou & Pierluigi Siano, 2021. "A Real-Time Energy Management System Design for a Developed PV-Based Distributed Generator Considering the Grid Code Requirements in Turkey," Energies, MDPI, vol. 14(20), pages 1-21, October.
    6. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    7. Miguel Ángel Pardo & Héctor Fernández & Antonio Jodar-Abellan, 2020. "Converting a Water Pressurized Network in a Small Town into a Solar Power Water System," Energies, MDPI, vol. 13(15), pages 1-26, August.
    8. Alicia Crespo & Gabriel Zsembinszki & David Vérez & Emiliano Borri & Cèsar Fernández & Luisa F. Cabeza & Alvaro de Gracia, 2021. "Optimization of Design Variables of a Phase Change Material Storage Tank and Comparison of a 2D Implicit vs. 2D Explicit Model," Energies, MDPI, vol. 14(9), pages 1-15, May.
    9. Elshurafa, Amro M. & Alatawi, Hatem & Hasanov, Fakhri J. & Algahtani, Goblan J. & Felder, Frank A., 2022. "Cost, emission, and macroeconomic implications of diesel displacement in the Saudi agricultural sector: Options and policy insights," Energy Policy, Elsevier, vol. 168(C).
    10. van de Loo, Maaike & Camacho Poyato, Emilio & van Halsema, Gerardo & Rodríguez Díaz, Juan Antonio, 2024. "Defining the optimization strategy for solar energy use in large water distribution networks: A case study from the Valle Inferior irrigation system, Spain," Renewable Energy, Elsevier, vol. 228(C).
    11. Yu, Yingdong & Liu, Jiahong & Wang, Ying & Xiang, Chenyao & Zhou, Jinjun, 2018. "Practicality of using solar energy for cassava irrigation in the Guangxi Autonomous Region, China," Applied Energy, Elsevier, vol. 230(C), pages 31-41.
    12. Vallati, A. & Ocłoń, P. & Colucci, C. & Mauri, L. & de Lieto Vollaro, R. & Taler, J., 2019. "Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector," Energy, Elsevier, vol. 174(C), pages 91-96.
    13. Romaní, Joaquim & Belusko, Martin & Alemu, Alemu & Cabeza, Luisa F. & de Gracia, Alvaro & Bruno, Frank, 2018. "Optimization of deterministic controls for a cooling radiant wall coupled to a PV array," Applied Energy, Elsevier, vol. 229(C), pages 1103-1110.
    14. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Liang, Ruobing & Zhou, Chao & Zhang, Jili & Chen, Jianquan & Riaz, Ahmad, 2020. "Characteristics analysis of the photovoltaic thermal heat pump system on refrigeration mode: An experimental investigation," Renewable Energy, Elsevier, vol. 146(C), pages 2450-2461.
    16. Julio Pombo-Romero & Hans Langeveld & Marta Fernández-Redondo, 2023. "Diffusion of renewable energy technology on Spanish farms: drivers and barriers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11769-11787, October.
    17. Elnozahy, Ahmed & Abdel-Salam, Mazen & Abo-Elyousr, Farag K., 2024. "Optimal techno-economic energy coordination of solar PV water pumping irrigation systems," Energy, Elsevier, vol. 288(C).
    18. Carles Sanchis-Ibor & Mar Ortega-Reig & Amanda Guillem-García & Juan M. Carricondo & Juan Manzano-Juárez & Marta García-Mollá & Álvaro Royuela, 2021. "Irrigation Post-Modernization. Farmers Envisioning Irrigation Policy in the Region of Valencia (Spain)," Agriculture, MDPI, vol. 11(4), pages 1-21, April.
    19. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
    20. Simon Heslop & Baran Yildiz & Mike Roberts & Dong Chen & Tim Lau & Shayan Naderi & Anna Bruce & Iain MacGill & Renate Egan, 2022. "A Novel Temperature-Independent Model for Estimating the Cooling Energy in Residential Homes for Pre-Cooling and Solar Pre-Cooling," Energies, MDPI, vol. 15(23), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4114-:d:396584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.