IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3804-d389434.html
   My bibliography  Save this article

Co-Digestion of Salix and Manure for Biogas: Importance of Clone Choice, Coppicing Frequency and Reactor Setup

Author

Listed:
  • Jonas A. Ohlsson

    (Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, S-750 07 Uppsala, Sweden)

  • Ann-Christin Rönnberg-Wästljung

    (Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Box 7080, S-750 07 Uppsala, Sweden)

  • Nils-Erik Nordh

    (Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Box 7043, S-750 07 Uppsala, Sweden)

  • Anna Schnürer

    (Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, S-750 07 Uppsala, Sweden)

Abstract

Animal manure represents a major source of renewable energy that can be converted into biogas using anaerobic digestion. In order to most efficiently utilize this resource, it can be co-digested with energy dense, high biomethanation potential feedstocks such as energy crops. However, such feedstocks typically require pretreatments which are not feasible for small-scale facilities. We investigated the use of single-stage and the sequential co-digestion of comminuted but otherwise non-pretreated Salix with animal manure, and further investigated the effects of coppicing frequency and clone choice on biomethanation potential and the area requirements for a typical Swedish farm-scale anaerobic digester using Salix and manure as feedstock. In comparison with conventional single-stage digestion, sequential digestion increased the volumetric and specific methane production by 57% to 577 NmL L −1 d −1 and 192 NmL (g volatile solids (VS)) −1 , respectively. Biomethanation potential was the highest for the two-year-old shoots, although gains in biomass productivity suggest that every-third-year coppicing may be a better strategy for supplying Salix feedstock for anaerobic digestion. The biomethane production performance of the sequential digestion of minimally pretreated Salix mirrors that of hydrothermally pretreated hardwoods and may provide an option where such pretreatments are not feasible.

Suggested Citation

  • Jonas A. Ohlsson & Ann-Christin Rönnberg-Wästljung & Nils-Erik Nordh & Anna Schnürer, 2020. "Co-Digestion of Salix and Manure for Biogas: Importance of Clone Choice, Coppicing Frequency and Reactor Setup," Energies, MDPI, vol. 13(15), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3804-:d:389434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    3. Teghammar, Anna & Forgács, Gergely & Sárvári Horváth, Ilona & Taherzadeh, Mohammad J., 2014. "Techno-economic study of NMMO pretreatment and biogas production from forest residues," Applied Energy, Elsevier, vol. 116(C), pages 125-133.
    4. Ericsson, Niclas & Nordberg, Åke & Sundberg, Cecilia & Ahlgren, Serina & Hansson, Per-Anders, 2014. "Climate impact and energy efficiency from electricity generation through anaerobic digestion or direct combustion of short rotation coppice willow," Applied Energy, Elsevier, vol. 132(C), pages 86-98.
    5. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    6. Lönnqvist, Tomas & Silveira, Semida & Sanches-Pereira, Alessandro, 2013. "Swedish resource potential from residues and energy crops to enhance biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 298-314.
    7. Boehmel, Constanze & Lewandowski, Iris & Claupein, Wilhelm, 2008. "Comparing annual and perennial energy cropping systems with different management intensities," Agricultural Systems, Elsevier, vol. 96(1-3), pages 224-236, March.
    8. Scarlat, Nicolae & Fahl, Fernando & Dallemand, Jean-François & Monforti, Fabio & Motola, Vicenzo, 2018. "A spatial analysis of biogas potential from manure in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 915-930.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charalampos Toufexis & Dimitrios-Orfeas Makris & Christos Vlachokostas & Alexandra V. Michailidou & Christos Mertzanakis & Athanasia Vachtsiavanou, 2024. "Bridging the Gap between Biowaste and Biomethane Production: A Systematic Review Meta-Analysis Methodological Approach," Sustainability, MDPI, vol. 16(15), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    2. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    3. Alessandro Casasso & Marta Puleo & Deborah Panepinto & Mariachiara Zanetti, 2021. "Economic Viability and Greenhouse Gas (GHG) Budget of the Biomethane Retrofit of Manure-Operated Biogas Plants: A Case Study from Piedmont, Italy," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    4. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Jiapei Wei & Gefu Liang & James Alex & Tongchao Zhang & Chunbo Ma, 2020. "Research Progress of Energy Utilization of Agricultural Waste in China: Bibliometric Analysis by Citespace," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    6. Vasmara, Ciro & Marchetti, Rosa & Carminati, Domenico, 2021. "Wastewater from the production of lactic acid bacteria as feedstock in anaerobic digestion," Energy, Elsevier, vol. 229(C).
    7. Xueqing Yang & Yang Liu & Mei Wang & Alberto Bezama & Daniela Thrän, 2021. "Identifying the Necessities of Regional-Based Analysis to Study Germany’s Biogas Production Development under Energy Transition," Land, MDPI, vol. 10(2), pages 1-20, February.
    8. Ramírez-Arpide, Félix Rafael & Espinosa-Solares, Teodoro & Gallegos-Vázquez, Clemente & Santoyo-Cortés, Vinicio Horacio, 2019. "Bioenergy production from nopal cladodes and dairy cow manure on a farm-scale level: Challenges for its economic feasibility in Mexico," Renewable Energy, Elsevier, vol. 142(C), pages 383-392.
    9. Erika Winquist & Michiel Van Galen & Simon Zielonka & Pasi Rikkonen & Diti Oudendag & Lijun Zhou & Auke Greijdanus, 2021. "Expert Views on the Future Development of Biogas Business Branch in Germany, The Netherlands, and Finland until 2030," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    10. Schlund, David & Schönfisch, Max, 2021. "Analysing the impact of a renewable hydrogen quota on the European electricity and natural gas markets," Applied Energy, Elsevier, vol. 304(C).
    11. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    12. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. D'Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport," Energy Policy, Elsevier, vol. 138(C).
    15. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    18. Tjutju, N.A.S. & Ammenberg, J. & Lindfors, A., 2024. "Biogas potential studies: A review of their scope, approach, and relevance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    19. Hamelin, Lorie & Møller, Henrik Bjarne & Jørgensen, Uffe, 2021. "Harnessing the full potential of biomethane towards tomorrow's bioeconomy: A national case study coupling sustainable agricultural intensification, emerging biogas technologies and energy system analy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Giovanni Ferrari & Andrea Pezzuolo & Abdul-Sattar Nizami & Francesco Marinello, 2020. "Bibliometric Analysis of Trends in Biomass for Bioenergy Research," Energies, MDPI, vol. 13(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3804-:d:389434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.