IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3701-d386266.html
   My bibliography  Save this article

Engineering Concept of Energy Storage Systems Based on New Type of Silicon Photovoltaic Module and Lithium Ion Batteries

Author

Listed:
  • Stanisław Maleczek

    (Military Institute of Engineer Technology, Obornicka 136 Str., 50-961 Wroclaw, Poland)

  • Kazimierz Drabczyk

    (Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland)

  • Krzysztof Artur Bogdanowicz

    (Military Institute of Engineer Technology, Obornicka 136 Str., 50-961 Wroclaw, Poland)

  • Agnieszka Iwan

    (Military Institute of Engineer Technology, Obornicka 136 Str., 50-961 Wroclaw, Poland)

Abstract

In recent years, a great importance has been given to hybrid systems of energy generators and energy storages. This article presents the results of our research aimed at checking the possibility of connecting a photovoltaic (PV) module and a lithium-ion battery (LIB), using a simplified control module towards a cheap and efficient system. The photovoltaic modules based on crystalline silicon solar cells, tempered glass as the front layer and ethylene-vinyl acetate (EVA) copolymer as encapsulation material are the most popular type in the industry. The disadvantage of such module type is the high weight of about 15 kg/m 2 . The weight of PV module used in the presented energy storage system is twice as small. This new type of PV module is based on treated poly(methyl methacrylate) (PMMA) as back sheet; high transparent foil as front sheet. Changing glass layer to PMMA requires additional modification of the lamination process parameters and EVA polymer type. For this reason, an EVA polymer with reduced crosslinking temperature was used in most cases; the voltage obtained from solar panels is significantly different from the one required by battery system. Hence, voltage converters (step-up or step-down) are needed. The use of a voltage stabilizing converter (which is a kind of electrical buffer) between the solar cell and lithium-ion battery can in some cases replace the battery overcharge protection system. However, an indispensable element is the system protecting the battery from excessive discharge. The voltage converter permits direct connection between the electricity storage and power supply, which current-voltage parameters do not match. The converter’s task is to change the value of current and voltage in a way that meets the requirements of the powered receiver, minimizing power losses, increasing the whole system efficiency. Photovoltaic parameters of the energy storage systems were examined in laboratory and real conditions.

Suggested Citation

  • Stanisław Maleczek & Kazimierz Drabczyk & Krzysztof Artur Bogdanowicz & Agnieszka Iwan, 2020. "Engineering Concept of Energy Storage Systems Based on New Type of Silicon Photovoltaic Module and Lithium Ion Batteries," Energies, MDPI, vol. 13(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3701-:d:386266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vega-Garita, Victor & Ramirez-Elizondo, Laura & Bauer, Pavol, 2017. "Physical integration of a photovoltaic-battery system: A thermal analysis," Applied Energy, Elsevier, vol. 208(C), pages 446-455.
    2. Agroui, K. & Collins, G. & Farenc, J., 2012. "Measurement of glass transition temperature of crosslinked EVA encapsulant by thermal analysis for photovoltaic application," Renewable Energy, Elsevier, vol. 43(C), pages 218-223.
    3. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
    4. Jiantie Xu & Yonghua Chen & Liming Dai, 2015. "Efficiently photo-charging lithium-ion battery by perovskite solar cell," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    5. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    6. Sheng-Yu Tseng & Hung-Yuan Wang, 2013. "A Photovoltaic Power System Using a High Step-up Converter for DC Load Applications," Energies, MDPI, vol. 6(2), pages 1-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Iwan & Witalis Pellowski & Krzysztof A. Bogdanowicz, 2021. "Conversion of Radiophotoluminescence Irradiation into Electricity in Photovoltaic Cells. A Review of Theoretical Considerations and Practical Solutions," Energies, MDPI, vol. 14(19), pages 1-39, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    2. Thi Kim Tuoi, Truong & Van Toan, Nguyen & Ono, Takahito, 2022. "Self-powered wireless sensing system driven by daily ambient temperature energy harvesting," Applied Energy, Elsevier, vol. 311(C).
    3. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    4. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    5. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    6. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    7. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    8. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2023. "Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO 2 Emissions," Mathematics, MDPI, vol. 11(7), pages 1-23, March.
    9. Tao Xu & He Meng & Jie Zhu & Wei Wei & He Zhao & Han Yang & Zijin Li & Yuhan Wu, 2021. "Optimal Capacity Allocation of Energy Storage in Distribution Networks Considering Active/Reactive Coordination," Energies, MDPI, vol. 14(6), pages 1-24, March.
    10. Jose-Maria Delgado-Sanchez & Isidoro Lillo-Bravo, 2020. "Influence of Degradation Processes in Lead–Acid Batteries on the Technoeconomic Analysis of Photovoltaic Systems," Energies, MDPI, vol. 13(16), pages 1-28, August.
    11. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
    12. Elsisi, Mahmoud & Bazmohammadi, Najmeh & Guerrero, Josep M. & Ebrahim, Mohamed A., 2021. "Energy management of controllable loads in multi-area power systems with wind power penetration based on new supervisor fuzzy nonlinear sliding mode control," Energy, Elsevier, vol. 221(C).
    13. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    14. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Fang, Sidun, 2020. "Joint voyage scheduling and economic dispatch for all-electric ships with virtual energy storage systems," Energy, Elsevier, vol. 190(C).
    15. Rajan, Rijo & Fernandez, Francis M. & Yang, Yongheng, 2021. "Primary frequency control techniques for large-scale PV-integrated power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    17. Defu Cai & Zuowei Wang & Shihong Miao & Rusi Chen & Zhong Zheng & Kunpeng Zhou, 2022. "Wind-Photovoltaic-Energy Storage System Collaborative Planning Strategy Considering the Morphological Evolution of the Transmission and Distribution Network," Energies, MDPI, vol. 15(4), pages 1-17, February.
    18. Cheekatamarla, Praveen K. & Kassaee, Saiid & Abu-Heiba, Ahmad & Momen, Ayyoub M., 2022. "Near isothermal compressed air energy storage system in residential and commercial buildings: Techno-economic analysis," Energy, Elsevier, vol. 251(C).
    19. Luna, José Diogo Forte de Oliveira & Naspolini, Amir & Reis, Guilherme Nascimento Gouvêa dos & Mendes, Paulo Renato da Costa & Normey-Rico, Julio Elias, 2024. "A novel joint energy and demand management system for smart houses based on model predictive control, hybrid storage system and quality of experience concepts," Applied Energy, Elsevier, vol. 369(C).
    20. Abdar, Moloud & Basiri, Mohammad Ehsan & Yin, Junjun & Habibnezhad, Mahmoud & Chi, Guangqing & Nemati, Shahla & Asadi, Somayeh, 2020. "Energy choices in Alaska: Mining people's perception and attitudes from geotagged tweets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3701-:d:386266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.