IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3669-d385494.html
   My bibliography  Save this article

Fast Design Procedure for Turboexpanders in Pressure Energy Recovery Applications

Author

Listed:
  • Gaetano Morgese

    (Department of Mechanics, Mathematics and Management (DMMM), Polytechnic University of Bari, via Orabona 4, 70125 Bari, Italy)

  • Francesco Fornarelli

    (Department of Mechanics, Mathematics and Management (DMMM), Polytechnic University of Bari, via Orabona 4, 70125 Bari, Italy
    National Group of Mathematical Physics (GNFM) of the Italian National Institute of High Mathematics (INDAM), Piazzale Aldo Moro, 5, 00185 Rome, Italy)

  • Paolo Oresta

    (Department of Mechanics, Mathematics and Management (DMMM), Polytechnic University of Bari, via Orabona 4, 70125 Bari, Italy)

  • Tommaso Capurso

    (Department of Mechanics, Mathematics and Management (DMMM), Polytechnic University of Bari, via Orabona 4, 70125 Bari, Italy)

  • Michele Stefanizzi

    (Department of Mechanics, Mathematics and Management (DMMM), Polytechnic University of Bari, via Orabona 4, 70125 Bari, Italy)

  • Sergio M. Camporeale

    (Department of Mechanics, Mathematics and Management (DMMM), Polytechnic University of Bari, via Orabona 4, 70125 Bari, Italy)

  • Marco Torresi

    (Department of Mechanics, Mathematics and Management (DMMM), Polytechnic University of Bari, via Orabona 4, 70125 Bari, Italy)

Abstract

Sustainable development can no longer neglect the growth of those technologies that look at the recovery of any energy waste in industrial processes. For example, in almost every industrial plant it happens that pressure energy is wasted in throttling devices for pressure and flow control needs. Clearly, the recovery of this wasted energy can be considered as an opportunity to reach not only a higher plant energy efficiency, but also the reduction of the plant Operating Expenditures (OpEx). In recent years, it is getting common to replace throttling valves with turbine-based systems (tuboexpander) thus getting both the pressure control and the energy recovery, for instance, producing electricity. However, the wide range of possible operating conditions, technical requirements and design constrains determine highly customized constructions of these turboexpanders. Furthermore, manufacturers are interested in tools enabling them to rapidly get the design of their products. For these reasons, in this work we propose an optimization design procedure, which is able to rapidly come to the design of the turboexpander taking into account all the fluid dynamic and technical requirements, considering the already obtained achievements of the scientific community in terms of theory, experiments and numeric. In order to validate the proposed methodology, the case of a single stage axial impulse turbine is considered. However, the methodology extension to other turbomachines is straightforward. Specifically, the design requirements were expressed in terms of maximum allowable expansion ratio and flow coefficient, while achieving at least a minimum assigned value of the turbine loading factor. Actually, it is an iterative procedure, carried out up to convergence, made of the following steps: (i) the different loss coefficients in the turbine are set-up in order to estimate its main geometric parameters by means of a one dimensional (1D) study; (ii) the 2D blade profiles are designed by means of an optimization algorithm based on a “viscous/inviscid interaction” technique; (iii) 3D Computational Fluid Dynamic (CFD) simulations are then carried out and the loss coefficients are computed and updated. Regarding the CFD simulations, a preliminary model assessment has been performed against a reference case, chosen in the literature. The above-mentioned procedure is implemented in such a way to speed up the convergence, coupling analytical integral models of the 1D/2D approach with accurate local solutions of the finite-volume 3D approach. The method is shown to be able to achieve consistent results, allowing the determination of a turbine design respectful of the requirements more than doubling the minimum required loading factor.

Suggested Citation

  • Gaetano Morgese & Francesco Fornarelli & Paolo Oresta & Tommaso Capurso & Michele Stefanizzi & Sergio M. Camporeale & Marco Torresi, 2020. "Fast Design Procedure for Turboexpanders in Pressure Energy Recovery Applications," Energies, MDPI, vol. 13(14), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3669-:d:385494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qyyum, Muhammad Abdul & Ali, Wahid & Long, Nguyen Van Duc & Khan, Mohd Shariq & Lee, Moonyong, 2018. "Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine," Energy, Elsevier, vol. 144(C), pages 968-976.
    2. Szymon Kuczyński & Mariusz Łaciak & Andrzej Olijnyk & Adam Szurlej & Tomasz Włodek, 2019. "Techno-Economic Assessment of Turboexpander Application at Natural Gas Regulation Stations," Energies, MDPI, vol. 12(4), pages 1-21, February.
    3. Cascio, Ermanno Lo & Ma, Zhenjun & Schenone, Corrado, 2018. "Performance assessment of a novel natural gas pressure reduction station equipped with parabolic trough solar collectors," Renewable Energy, Elsevier, vol. 128(PA), pages 177-187.
    4. Fiaschi, Daniele & Manfrida, Giampaolo & Maraschiello, Francesco, 2015. "Design and performance prediction of radial ORC turboexpanders," Applied Energy, Elsevier, vol. 138(C), pages 517-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O. Saied & A. Abdellatif & S. Shaaban & A. F. Elsafty, 2022. "Efficient Energy Recovery Scenarios from Pressure-Reducing Stations Intended for New Al-Alamein City in Egypt," Energies, MDPI, vol. 15(23), pages 1-17, November.
    2. Ali Rafiei Sefiddashti & Reza Shirmohammadi & Fontina Petrakopoulou, 2021. "Efficiency Enhancement of Gas Turbine Systems with Air Injection Driven by Natural Gas Turboexpanders," Sustainability, MDPI, vol. 13(19), pages 1-17, October.
    3. Ningjian Peng & Enhua Wang & Hongguang Zhang, 2021. "Preliminary Design of an Axial-Flow Turbine for Small-Scale Supercritical Organic Rankine Cycle," Energies, MDPI, vol. 14(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Bielka & Szymon Kuczyński, 2022. "Energy Recovery from Natural Gas Pressure Reduction Stations with the Use of Turboexpanders: Static and Dynamic Simulations," Energies, MDPI, vol. 15(23), pages 1-19, November.
    2. Al Jubori, Ayad M. & Al-Dadah, Raya & Mahmoud, Saad, 2017. "Performance enhancement of a small-scale organic Rankine cycle radial-inflow turbine through multi-objective optimization algorithm," Energy, Elsevier, vol. 131(C), pages 297-311.
    3. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    4. Witanowski, Ł. & Klonowicz, P. & Lampart, P. & Suchocki, T. & Jędrzejewski, Ł. & Zaniewski, D. & Klimaszewski, P., 2020. "Optimization of an axial turbine for a small scale ORC waste heat recovery system," Energy, Elsevier, vol. 205(C).
    5. Weiß, Andreas P. & Novotný, Václav & Popp, Tobias & Streit, Philipp & Špale, Jan & Zinn, Gerd & Kolovratník, Michal, 2020. "Customized ORC micro turbo-expanders - From 1D design to modular construction kit and prospects of additive manufacturing," Energy, Elsevier, vol. 209(C).
    6. Qyyum, Muhammad Abdul & Qadeer, Kinza & Minh, Le Quang & Haider, Junaid & Lee, Moonyong, 2019. "Nitrogen self-recuperation expansion-based process for offshore coproduction of liquefied natural gas, liquefied petroleum gas, and pentane plus," Applied Energy, Elsevier, vol. 235(C), pages 247-257.
    7. Muhammad Abdul Qyyum & Yus Donald Chaniago & Wahid Ali & Hammad Saulat & Moonyong Lee, 2020. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction," Energies, MDPI, vol. 13(19), pages 1-18, September.
    8. Pajączek, Krzysztof & Kostowski, Wojciech & Stanek, Wojciech, 2020. "Natural gas liquefaction using the high-pressure potential in the gas transmission system," Energy, Elsevier, vol. 202(C).
    9. Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
    10. Yao, Yubo & Fang, Song & Zhu, Shaolong & Xu, Zhuoren & Zhang, Hanwei & Gan, Haoran & Iqbal, Qasir & Qiu, Limin & Wang, Kai, 2024. "Optimal design and tip leakage flow characteristics analysis of radial inflow turbine used in organic Rankine and vapor compression refrigeration system," Energy, Elsevier, vol. 301(C).
    11. Ssebabi, B. & Dobson, R.T. & Sebitosi, A.B., 2015. "Characterising a turbine for application in an organic Rankine cycle," Energy, Elsevier, vol. 93(P2), pages 1617-1632.
    12. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).
    13. Da Lio, Luca & Manente, Giovanni & Lazzaretto, Andrea, 2017. "A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems," Applied Energy, Elsevier, vol. 205(C), pages 187-209.
    14. Sun, Chongzheng & Li, Yuxing & Han, Hui & Zhu, Jianlu & Wang, Shaowei & Liu, Liang, 2019. "Experimental and numerical simulation study on the offshore adaptability of spiral wound heat exchanger in LNG-FPSO DMR natural gas liquefaction process," Energy, Elsevier, vol. 189(C).
    15. Wang, Xiu & Zhao, Liang & Zhang, Lihui & Zhang, Menghui & Dong, Hui, 2019. "A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 187(C).
    16. Andrea Meroni & Angelo La Seta & Jesper Graa Andreasen & Leonardo Pierobon & Giacomo Persico & Fredrik Haglind, 2016. "Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model," Energies, MDPI, vol. 9(5), pages 1-15, April.
    17. Xu, Jingxuan & Song, Zekai & Chen, Xi & Yang, Qiguo, 2024. "Design and optimization of high-density cryogenic supercritical hydrogen storage systems integrating with dual mixed refrigerant cycles," Energy, Elsevier, vol. 290(C).
    18. Lo Cascio, Ermanno & De Schutter, Bart & Schenone, Corrado, 2018. "Flexible energy harvesting from natural gas distribution networks through line-bagging," Applied Energy, Elsevier, vol. 229(C), pages 253-263.
    19. Brodal, Eivind & Jackson, Steve & Eiksund, Oddmar, 2019. "Performance and design study of optimized LNG Mixed Fluid Cascade processes," Energy, Elsevier, vol. 189(C).
    20. Rehman, Ali & Qyyum, Muhammad Abdul & Qadeer, Kinza & Zakir, Fatima & Ding, Yulong & Lee, Moonyong & Wang, Li, 2020. "Integrated biomethane liquefaction using exergy from the discharging end of a liquid air energy storage system," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3669-:d:385494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.