IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3634-d384532.html
   My bibliography  Save this article

Analysis of the Effects of Electrification of the Road Transport Sector on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix

Author

Listed:
  • Daniele Lerede

    (MAHTEP Group, Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Chiara Bustreo

    (Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy)

  • Francesco Gracceva

    (Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Lungotevere Thaon di Revel, 76, 00196 Rome, Italy)

  • Yolanda Lechón

    (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 40, 28040 Madrid, Spain)

  • Laura Savoldi

    (MAHTEP Group, Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

The European Roadmap towards the production of electricity from nuclear fusion foresees the potential availability of nuclear fusion power plants (NFPPs) in the second half of this century. The possible penetration of that technology, typically addressed by using the global energy system EUROFusion TIMES Model (ETM), will depend, among other aspects, on its costs compared to those of the other available technologies for electricity production, and on the future electricity demand. This paper focuses on the ongoing electrification process of the transport sector, with special attention devoted to road transport. A survey on the present and forthcoming technologies, as foreseen by several manufacturers and other models, and an international vehicle database are taken into account to develop the new road transport module, then implemented and harmonized inside ETM. Following three different storylines, the computed results are presented in terms of the evolution of the road transport demand in the next decades, fleet composition and CO 2 emissions. The ETM results are in line with many other studies. On one hand, they highlight, for the European road transport energy consumption pattern, the need for dramatic changes in the transport market, if the most ambitious environmental goals are to be pursued. On the other hand, the results also show that NFPP adoption on a commercial scale could be justified within the current projection of the investment costs, if the deep penetration of electricity in the road transport sector also occurs.

Suggested Citation

  • Daniele Lerede & Chiara Bustreo & Francesco Gracceva & Yolanda Lechón & Laura Savoldi, 2020. "Analysis of the Effects of Electrification of the Road Transport Sector on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix," Energies, MDPI, vol. 13(14), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3634-:d:384532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3634/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3634/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vaillancourt, Kathleen & Labriet, Maryse & Loulou, Richard & Waaub, Jean-Philippe, 2008. "The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model," Energy Policy, Elsevier, vol. 36(7), pages 2296-2307, July.
    2. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    3. Hao, Han & Geng, Yong & Sarkis, Joseph, 2016. "Carbon footprint of global passenger cars: Scenarios through 2050," Energy, Elsevier, vol. 101(C), pages 121-131.
    4. Seixas, J. & Simões, S. & Dias, L. & Kanudia, A. & Fortes, P. & Gargiulo, M., 2015. "Assessing the cost-effectiveness of electric vehicles in European countries using integrated modeling," Energy Policy, Elsevier, vol. 80(C), pages 165-176.
    5. Segantin, Stefano & Testoni, Raffaella & Zucchetti, Massimo, 2019. "The lifetime determination of ARC reactor as a load-following plant in the energy framework," Energy Policy, Elsevier, vol. 126(C), pages 66-75.
    6. P. Capros & Denise Van Regemorter & Leonidas Paroussos & P. Karkatsoulis & C. Fragkiadakis & S. Tsani & I. Charalampidis & Tamas Revesz, 2013. "GEM-E3 Model Documentation," JRC Research Reports JRC83177, Joint Research Centre.
    7. Tokimatsu, Koji & Fujino, Jun'ichi & Konishi, Satoshi & Ogawa, Yuichi & Yamaji, Kenji, 2003. "Role of nuclear fusion in future energy systems and the environment under future uncertainties," Energy Policy, Elsevier, vol. 31(8), pages 775-797, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lerede, D. & Bustreo, C. & Gracceva, F. & Saccone, M. & Savoldi, L., 2021. "Techno-economic and environmental characterization of industrial technologies for transparent bottom-up energy modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Adam Jan Zwierzyński & Wojciech Teper & Rafał Wiśniowski & Andrzej Gonet & Tomasz Buratowski & Tadeusz Uhl & Karol Seweryn, 2021. "Feasibility Study of Low Mass and Low Energy Consumption Drilling Devices for Future Space (Mining Surveying) Missions," Energies, MDPI, vol. 14(16), pages 1-17, August.
    3. Matteo Nicoli & Francesco Gracceva & Daniele Lerede & Laura Savoldi, 2022. "Can We Rely on Open-Source Energy System Optimization Models? The TEMOA-Italy Case Study," Energies, MDPI, vol. 15(18), pages 1-37, September.
    4. Lerede, Daniele & Pinto, Giuseppe & Saccone, Mirko & Bustreo, Chiara & Capozzoli, Alfonso & Savoldi, Laura, 2021. "Application of a Stochastic Multicriteria Acceptability Analysis to support decision-making within a macro-scale energy model: Case study of the electrification of the road European transport sector," Energy, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Halkos & Argyro Zisiadou, 2023. "Energy Crisis Risk Mitigation through Nuclear Power and RES as Alternative Solutions towards Self-Sufficiency," JRFM, MDPI, vol. 16(1), pages 1-29, January.
    2. Cai, Yongxia & Woollacott, Jared & Beach, Robert H. & Rafelski, Lauren E. & Ramig, Christopher & Shelby, Michael, 2023. "Insights from adding transportation sector detail into an economy-wide model: The case of the ADAGE CGE model," Energy Economics, Elsevier, vol. 123(C).
    3. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Georgios Zazias & Pantelis Capros, 2019. "Factors Influencing Electric Vehicle Penetration in the EU by 2030: A Model-Based Policy Assessment," Energies, MDPI, vol. 12(14), pages 1-25, July.
    4. Aryanpur, Vahid & Balyk, Olexandr & Daly, Hannah & Ó Gallachóir, Brian & Glynn, James, 2022. "Decarbonisation of passenger light-duty vehicles using spatially resolved TIMES-Ireland Model," Applied Energy, Elsevier, vol. 316(C).
    5. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    6. Kiriyama, Eriko & Kajikawa, Yuya & Fujita, Katsuhide & Iwata, Shuichi, 2013. "A lead for transvaluation of global nuclear energy research and funded projects in Japan," Applied Energy, Elsevier, vol. 109(C), pages 145-153.
    7. Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
    8. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    9. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    10. Segantin, Stefano & Testoni, Raffaella & Zucchetti, Massimo, 2019. "The lifetime determination of ARC reactor as a load-following plant in the energy framework," Energy Policy, Elsevier, vol. 126(C), pages 66-75.
    11. Mounir Ben Mbarek & Racha Khairallah & Rochdi Feki, 2015. "Causality relationships between renewable energy, nuclear energy and economic growth in France," Environment Systems and Decisions, Springer, vol. 35(1), pages 133-142, March.
    12. Anders Skonhoft & Bjart Holtsmark, 2014. "The Norwegian support and subsidy of electric cars. Should it be adopted by other countries?," Working Paper Series 15814, Department of Economics, Norwegian University of Science and Technology.
    13. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Lee, Chien-Chiang & Chiu, Yi-Bin, 2011. "Oil prices, nuclear energy consumption, and economic growth: New evidence using a heterogeneous panel analysis," Energy Policy, Elsevier, vol. 39(4), pages 2111-2120, April.
    15. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    16. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    17. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    18. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    19. Apergis, Nicholas & Payne, James E., 2010. "A panel study of nuclear energy consumption and economic growth," Energy Economics, Elsevier, vol. 32(3), pages 545-549, May.
    20. H. Pollitt & J. -F. Mercure, 2015. "The role of money and the financial sector in energy-economy models used for assessing climate policy," Papers 1512.02912, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3634-:d:384532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.