IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i1p45-d1032719.html
   My bibliography  Save this article

Energy Crisis Risk Mitigation through Nuclear Power and RES as Alternative Solutions towards Self-Sufficiency

Author

Listed:
  • George Halkos

    (Laboratory of Operations Research, Department of Economics, University of Thessaly, 38333 Volos, Greece)

  • Argyro Zisiadou

    (Laboratory of Operations Research, Department of Economics, University of Thessaly, 38333 Volos, Greece)

Abstract

This paper reviews the case of nuclear energy. Currently, the worldworld is facing one of the greatest energy crises due to the Russo-Ukrainian war. This conflict has lead to limited sources of gas, causing a dramatic decrease in energy supply, leading to emerging energy crisis risks. This is one on the main purposes of reviewing nuclear energy as a possible energy alternative in the future. Apart from presenting the basis of nuclear energy and nuclear reactors, we attempt to compare this source of electricity with other renewable energy forms, such as solar, wind and hydroelectric power. Furthermore, we illustrate the benefits and drawbacks that have been observed regarding nuclear power as well as its contribution to economic growth and the impact it has had on the environment. It has been said that, with the use of nuclear power, air pollution will be reduced because of the elimination of greenhouse gases. However, nuclear power, apart from the final product, generates waste that in this case is radioactive, meaning that the management and disposal techniques are of the utmost importance. Of course, unfortunate events that involved nuclear power do exist and are unfortunately engraved in our memories. Both the nuclear accidents, such as Three Mile Island, Chernobyl and Fukushima, and nuclear weapons usage by military forces, the well-known atomic bombing of Hiroshima and Nagasaki, bring great controversy regarding the adaptation of nuclear power. As is presented in the paper, since the beginning of the new millennium the scheme of energy production and electricity production appears to have changed drastically. By using available data reported by BR, we illustrated that the production of energy and electricity has increased over the last 22 years (2000–2021) due to excessive demand; however, what is more important to mention is the share of both electricity and energy derived from renewable forms such as solar, wind and hydroelectric power. It is shown that more and more countries adopt those sources of energy than did in previous decades. It is crucial to note that it is not the science that causes catastrophic events, but rather the errors of humans.

Suggested Citation

  • George Halkos & Argyro Zisiadou, 2023. "Energy Crisis Risk Mitigation through Nuclear Power and RES as Alternative Solutions towards Self-Sufficiency," JRFM, MDPI, vol. 16(1), pages 1-29, January.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:1:p:45-:d:1032719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/1/45/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/1/45/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adamantiades, A. & Kessides, I., 2009. "Nuclear power for sustainable development: Current status and future prospects," Energy Policy, Elsevier, vol. 37(12), pages 5149-5166, December.
    2. Vaillancourt, Kathleen & Labriet, Maryse & Loulou, Richard & Waaub, Jean-Philippe, 2008. "The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model," Energy Policy, Elsevier, vol. 36(7), pages 2296-2307, July.
    3. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "Energy consumption, pollutant emissions and economic growth in South Africa," Energy Economics, Elsevier, vol. 32(6), pages 1374-1382, November.
    4. Iwata, Hiroki & Okada, Keisuke & Samreth, Sovannroeun, 2010. "Empirical study on the environmental Kuznets curve for CO2 in France: The role of nuclear energy," Energy Policy, Elsevier, vol. 38(8), pages 4057-4063, August.
    5. Kok, Besir & Benli, Hüseyin, 2017. "Energy diversity and nuclear energy for sustainable development in Turkey," Renewable Energy, Elsevier, vol. 111(C), pages 870-877.
    6. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    7. Sudhakara Reddy, B. & Assenza, Gaudenz B., 2009. "The great climate debate," Energy Policy, Elsevier, vol. 37(8), pages 2997-3008, August.
    8. DeCanio, Stephen J., 2009. "The political economy of global carbon emissions reductions," Ecological Economics, Elsevier, vol. 68(3), pages 915-924, January.
    9. Mourmouris, J.C. & Potolias, C., 2013. "A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece," Energy Policy, Elsevier, vol. 52(C), pages 522-530.
    10. Erdogdu, Erkan, 2007. "Nuclear power in open energy markets: A case study of Turkey," Energy Policy, Elsevier, vol. 35(5), pages 3061-3073, May.
    11. Quirin Schiermeier & Jeff Tollefson & Tony Scully & Alexandra Witze & Oliver Morton, 2008. "Energy alternatives: Electricity without carbon," Nature, Nature, vol. 454(7206), pages 816-823, August.
    12. Managi, Shunsuke & Guan, Dabo, 2017. "Multiple disasters management: Lessons from the Fukushima triple events," Economic Analysis and Policy, Elsevier, vol. 53(C), pages 114-122.
    13. Toth, Ferenc L. & Rogner, Hans-Holger, 2006. "Oil and nuclear power: Past, present, and future," Energy Economics, Elsevier, vol. 28(1), pages 1-25, January.
    14. Geoffrey Heal, 2009. "The Economics of Renewable Energy," NBER Working Papers 15081, National Bureau of Economic Research, Inc.
    15. Tokimatsu, Koji & Fujino, Jun'ichi & Konishi, Satoshi & Ogawa, Yuichi & Yamaji, Kenji, 2003. "Role of nuclear fusion in future energy systems and the environment under future uncertainties," Energy Policy, Elsevier, vol. 31(8), pages 775-797, June.
    16. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radu Ioan Petrariu & Marian Nastase & Gabriel Croitoru & Nicoleta Valentina Florea & Nicoleta Cristache & Mihaela Cristina Onica Ibinceanu, 2023. "Analysis of Responsible Energy Consumer s Behaviour in the Context of REPowerEU Plan," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 743-743, August.
    2. Halkos, George E. & Aslanidis, Panagiotis – Stavros C., 2023. "Sustainable energy development in an era of geopolitical multi-crisis. Applying productivity indices within institutional framework," Resources Policy, Elsevier, vol. 85(PB).
    3. Ma, Yu & Wang, Yutian & Zhou, Xiangjun, 2024. "The impact of green finance on the development of the non-hydro renewable energy industry: An empirical study based on data from 30 provinces in China," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    2. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    3. Man-Keun Kim & Kangil Lee, 2015. "Dynamic Interactions between Carbon and Energy Prices in the U.S. Regional Greenhouse Gas Initiative," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 494-501.
    4. Qin Fei & Rajah Rasiah & Leow Jia Shen, 2014. "The Clean Energy-Growth Nexus with CO2 Emissions and Technological Innovation in Norway and New Zealand," Energy & Environment, , vol. 25(8), pages 1323-1344, December.
    5. Soytas, Ugur & Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2022. "Economic and environmental implications of the nuclear power phase-out in Belgium: Insights from time-series models and a partial differential equations algorithm," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 241-256.
    6. Hanan Naser, 2015. "Can Nuclear Energy Stimulates Economic Growth? Evidence from Highly Industrialised Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 164-173.
    7. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    8. Gideon Kwaku Minua Ampofo & Jinhua Cheng & Edwin Twum Ayimadu & Daniel Akwasi Asante, 2021. "Investigating the Asymmetric Effect of Economic Growth on Environmental Quality in the Next 11 Countries," Energies, MDPI, vol. 14(2), pages 1-29, January.
    9. Chen, Yang & Shao, Shuai & Fan, Meiting & Tian, Zhihua & Yang, Lili, 2022. "One man's loss is another's gain: Does clean energy development reduce CO2 emissions in China? Evidence based on the spatial Durbin model," Energy Economics, Elsevier, vol. 107(C).
    10. Rongrong Li & Min Su, 2017. "The Role of Natural Gas and Renewable Energy in Curbing Carbon Emission: Case Study of the United States," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    11. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    12. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    13. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    14. Ben Jebli, Mehdi & Ben Youssef, Slim, 2013. "Economic growth, combustible renewables and waste consumption and emissions in North Africa," MPRA Paper 47765, University Library of Munich, Germany.
    15. Sahbi Farhani, 2015. "Renewable energy consumption, economic growth and CO2 emissions: Evidence from selected MENA countries," Working Papers 2015-612, Department of Research, Ipag Business School.
    16. Marius Chofor Asaba & Fabian Duffner & Florian Frieden & Jens Leker & Stephan von Delft, 2022. "Location choice for large‐scale battery manufacturing plants: Exploring the role of clean energy, costs, and knowledge on location decisions in Europe," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1514-1527, August.
    17. Farhani, Sahbi & Shahbaz, Muhammad, 2014. "What role of renewable and non-renewable electricity consumption and output is needed to initially mitigate CO2 emissions in MENA region?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 80-90.
    18. Karakosta, Charikleia & Pappas, Charalampos & Marinakis, Vangelis & Psarras, John, 2013. "Renewable energy and nuclear power towards sustainable development: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 187-197.
    19. Iorember, Paul Terhemba & Usman, Ojonugwa & Jelilov, Gylych, 2019. "Asymmetric Effects of Renewable Energy Consumption, Trade Openness and Economic Growth on Environmental Quality in Nigeria and South Africa," MPRA Paper 96333, University Library of Munich, Germany, revised 2019.
    20. Segantin, Stefano & Testoni, Raffaella & Zucchetti, Massimo, 2019. "The lifetime determination of ARC reactor as a load-following plant in the energy framework," Energy Policy, Elsevier, vol. 126(C), pages 66-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:1:p:45-:d:1032719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.