IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3183-d373696.html
   My bibliography  Save this article

Prosumer Response Estimation Using SINDyc in Conjunction with Markov-Chain Monte-Carlo Sampling

Author

Listed:
  • Frederik Banis

    (Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Lyngby 2800, Denmark)

  • Henrik Madsen

    (Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Lyngby 2800, Denmark)

  • Niels K. Poulsen

    (Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Lyngby 2800, Denmark)

  • Daniela Guericke

    (Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Lyngby 2800, Denmark)

Abstract

Smart grid operation schemes can integrate prosumers by offering economic rewards in exchange for the desired response. In order to activate prosumers appropriately, such operation schemes require models of the dynamic uncertain price-response relationships. In this study, we combine the system identification of nonlinear dynamics with control (SINDyc) algorithm with Bayesian inference techniques based on Markov-chain Monte-Carlo sampling. We demonstrate this combination of two algorithms on an exemplary system in order to obtain parsimonious models alongside parameter uncertainty estimates. The precision of the identified models depends on the identification experiment and the parameterization of the algorithms. Such models may characterize the prosumer response and its uncertainty, thereby facilitating the integration of such entities into smart grid operation schemes.

Suggested Citation

  • Frederik Banis & Henrik Madsen & Niels K. Poulsen & Daniela Guericke, 2020. "Prosumer Response Estimation Using SINDyc in Conjunction with Markov-Chain Monte-Carlo Sampling," Energies, MDPI, vol. 13(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3183-:d:373696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    3. Juan M. Morales & Antonio J. Conejo & Henrik Madsen & Pierre Pinson & Marco Zugno, 2014. "Integrating Renewables in Electricity Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-9411-9, April.
    4. Jonah Gabry & Daniel Simpson & Aki Vehtari & Michael Betancourt & Andrew Gelman, 2019. "Visualization in Bayesian workflow," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 389-402, February.
    5. Kei Hirose & Miyuki Imada, 2018. "Sparse factor regression via penalized maximum likelihood estimation," Statistical Papers, Springer, vol. 59(2), pages 633-662, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barakat, Bilal Fouad & Dharamshi, Ameer & Alkema, Leontine & Antoninis, Manos, 2021. "Adjusted Bayesian Completion Rates (ABC) Estimation," SocArXiv at368, Center for Open Science.
    2. Andrew J Tanentzap & Samuel Cottingham & Jérémy Fonvielle & Isobel Riley & Lucy M Walker & Samuel G Woodman & Danai Kontou & Christian M Pichler & Erwin Reisner & Laurent Lebreton, 2021. "Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use," PLOS Biology, Public Library of Science, vol. 19(9), pages 1-18, September.
    3. Ameer Dharamshi & Bilal Barakat & Leontine Alkema & Manos Antoninis, 2022. "A Bayesian model for estimating Sustainable Development Goal indicator 4.1.2: School completion rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1822-1864, November.
    4. Aldo Gardini & Enrico Fabrizi & Carlo Trivisano, 2022. "Poverty and inequality mapping based on a unit‐level log‐normal mixture model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2073-2096, October.
    5. Lindeløv, Jonas Kristoffer, 2020. "mcp: An R Package for Regression With Multiple Change Points," OSF Preprints fzqxv, Center for Open Science.
    6. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    7. Zhang, Yunchang & Fricker, Jon D., 2021. "Quantifying the impact of COVID-19 on non-motorized transportation: A Bayesian structural time series model," Transport Policy, Elsevier, vol. 103(C), pages 11-20.
    8. Jair Andrade & Jim Duggan, 2021. "A Bayesian approach to calibrate system dynamics models using Hamiltonian Monte Carlo," System Dynamics Review, System Dynamics Society, vol. 37(4), pages 283-309, October.
    9. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    10. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    11. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    12. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    13. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    14. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    15. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    16. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    17. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    18. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    19. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    20. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3183-:d:373696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.