IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3077-d371309.html
   My bibliography  Save this article

Theoretical and Experimental Evaluation of the Working Fluid Temperature Levels in a CPV/T System

Author

Listed:
  • Carlo Renno

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy)

Abstract

A linear focus Concentrator Photovoltaic and Thermal (CPV/T) system can match the thermal demands of a user. The evaluation of the cooling fluid temperature levels of a CPV/T system is fundamental to understand if this system is capable of satisfying the typical thermal requirements of a residential user (heating, cooling and domestic hot water). First, an experimental line-focus CPV/T system, realized in the Laboratory of Applied Thermodynamics of the University of Salerno (Italy), has allowed to determine the cooling fluid temperature at the CPV/T system outlet. Successively, the cooling fluid temperatures, experimentally obtained, have been compared with the same temperatures calculated by means of a theoretical model under the same operation conditions. A deviation in terms of the percentage relative error between theoretical and experimental results included between about 0.5% and 5%, has been found. The goodness of the theoretical–experimental comparison in terms of the temperature of the operation fluid at the CPV/T system outlet has represented a fundamental point to evaluate theoretically, by means of the TRNSYS software, the other levels of temperature of an integrated system, constituted by CPV/T system, thermal tank and user, for different temporal scenarios (hourly, weekly, monthly and yearly). The input data of the TRNSYS model are: Direct Normal Irradiance (DNI), Triple-Junction (TJ) cell temperature and environmental conditions. A tank model is also adopted to satisfy the thermal energy demand peaks, and the temperature stratification in the tank linked to the CPV/T system, as function of the height, is obtained in winter and summer. It is important to define these thermal levels to verify if a CPV/T system is capable to satisfy the residential user energy demands or a thermal energy integration is necessary in some periods of the year. A good stratification has been noted in the summer season, with temperature values that are variable between about 40 and 90 °C. From April to October, the tank average temperature is generally resulted about 10 °C higher than the temperature required by the fluid sent to the residential user, and a very low integration is then necessary. It has been verified that the CPV/T system covers a large part of the thermal energy needs of the residential user during the year; the coverage is limited only in the winter months.

Suggested Citation

  • Carlo Renno, 2020. "Theoretical and Experimental Evaluation of the Working Fluid Temperature Levels in a CPV/T System," Energies, MDPI, vol. 13(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3077-:d:371309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karathanassis, I.K. & Papanicolaou, E. & Belessiotis, V. & Bergeles, G.C., 2019. "Dynamic simulation and exergetic optimization of a Concentrating Photovoltaic/ Thermal (CPVT) system," Renewable Energy, Elsevier, vol. 135(C), pages 1035-1047.
    2. Xiao Gong & Fan Li & Bo Sun & Dong Liu, 2020. "Collaborative Optimization of Multi-Energy Complementary Combined Cooling, Heating, and Power Systems Considering Schedulable Loads," Energies, MDPI, vol. 13(4), pages 1-17, February.
    3. Carlo Renno, 2018. "Experimental and Theoretical Analysis of a Linear Focus CPV/T System for Cogeneration Purposes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    4. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    5. Kerzmann, Tony & Schaefer, Laura, 2012. "System simulation of a linear concentrating photovoltaic system with an active cooling system," Renewable Energy, Elsevier, vol. 41(C), pages 254-261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    2. Carlo Renno & Alessandro Perone & Diana D’Agostino & Francesco Minichiello, 2023. "Performance Evaluation of a Linear CPV/T System in Different Working Conditions," Energies, MDPI, vol. 16(5), pages 1-19, February.
    3. Santos, Daniel & Azgın, Ahmet & Castro, Jesus & Kizildag, Deniz & Rigola, Joaquim & Tunçel, Bilge & Turan, Raşit & Preßmair, Rupert & Felsberger, Richard & Buchroithner, Armin, 2023. "Thermal and fluid dynamic optimization of a CPV-T receiver for solar co-generation applications: Numerical modelling and experimental validation," Renewable Energy, Elsevier, vol. 211(C), pages 87-99.
    4. Carlo Renno, 2021. "Experimental Comparison between Spherical and Refractive Optics in a Concentrating Photovoltaic System," Energies, MDPI, vol. 14(15), pages 1-15, July.
    5. Renno, C. & Perone, A., 2021. "Experimental modeling of the optical and energy performances of a point-focus CPV system applied to a residential user," Energy, Elsevier, vol. 215(PA).
    6. Carlo Renno & Fabio Petito & Diana D’Agostino & Francesco Minichiello, 2020. "Modeling of a CPV/T-ORC Combined System Adopted for an Industrial User," Energies, MDPI, vol. 13(13), pages 1-17, July.
    7. Carlo Renno & Alessandro Perone & Diana D’Agostino & Francesco Minichiello, 2021. "Experimental and Economic Analysis of a Concentrating Photovoltaic System Applied to Users of Increasing Size," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    2. Santos, Daniel & Azgın, Ahmet & Castro, Jesus & Kizildag, Deniz & Rigola, Joaquim & Tunçel, Bilge & Turan, Raşit & Preßmair, Rupert & Felsberger, Richard & Buchroithner, Armin, 2023. "Thermal and fluid dynamic optimization of a CPV-T receiver for solar co-generation applications: Numerical modelling and experimental validation," Renewable Energy, Elsevier, vol. 211(C), pages 87-99.
    3. Pabon, Juan J.G. & Khosravi, Ali & Malekan, M. & Sandoval, Oscar R., 2020. "Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system," Renewable Energy, Elsevier, vol. 157(C), pages 273-289.
    4. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Carlo Renno, 2018. "Experimental and Theoretical Analysis of a Linear Focus CPV/T System for Cogeneration Purposes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    6. Kasaeian, Alibakhsh & Tabasi, Sanaz & Ghaderian, Javad & Yousefi, Hossein, 2018. "A review on parabolic trough/Fresnel based photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 193-204.
    7. Renno, C. & Perone, A., 2021. "Experimental modeling of the optical and energy performances of a point-focus CPV system applied to a residential user," Energy, Elsevier, vol. 215(PA).
    8. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    10. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    11. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    12. Abotaleb, A. & Abdallah, A., 2018. "Performance of bifacial-silicon heterojunction modules under desert environment," Renewable Energy, Elsevier, vol. 127(C), pages 94-101.
    13. Robertson, John & Riggs, Brian & Islam, Kazi & Ji, Yaping Vera & Spitler, Christopher M. & Gupta, Naman & Krut, Dimitri & Ermer, Jim & Miller, Fletcher & Codd, Daniel & Escarra, Matthew, 2019. "Field testing of a spectrum-splitting transmissive concentrator photovoltaic module," Renewable Energy, Elsevier, vol. 139(C), pages 806-814.
    14. Ting Wang & Qiya Wang & Caiqing Zhang, 2021. "Research on the Optimal Operation of a Novel Renewable Multi-Energy Complementary System in Rural Areas," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    15. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Lamnatou, Chr. & Chemisana, D., 2017. "Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues," Renewable Energy, Elsevier, vol. 105(C), pages 270-287.
    17. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    18. Wu, Yanjuan & Wang, Caiwei & Wang, Yunliang, 2024. "Cooperative game optimization scheduling of multi-region integrated energy system based on ADMM algorithm," Energy, Elsevier, vol. 302(C).
    19. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    20. Wang, Ao & Xuan, Yimin, 2020. "Multiscale prediction of localized hot-spot phenomena in solar cells," Renewable Energy, Elsevier, vol. 146(C), pages 1292-1300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3077-:d:371309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.