IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp94-101.html
   My bibliography  Save this article

Performance of bifacial-silicon heterojunction modules under desert environment

Author

Listed:
  • Abotaleb, A.
  • Abdallah, A.

Abstract

Bifacial silicon Photovoltaic (PV) technology has the advantage of generating more energy output as compared with the conventional mono-facial technology. In this paper, a comparison is made between the performances of two bifacial silicon heterojunction modules mounted at two configurations under Qatar's climatic conditions: a tilt angle of 22° facing south and a tilt angle of 90° (vertical) facing east-west. The bifacial module mounted under standard tilt showed a 14% higher energy yield over the vertically tilted bifacial module. This is mainly due to higher irradiance received by the 22° tilted module relative to the vertically tilted module. On the other hand, a thermal model has been developed using COMSOL Multiphysics to calculate the theoretical power output, energy yield and module temperature. A gain in the short circuit current is found to increase linearly with the ratio of the diffuse irradiance to plane of array irradiance.

Suggested Citation

  • Abotaleb, A. & Abdallah, A., 2018. "Performance of bifacial-silicon heterojunction modules under desert environment," Renewable Energy, Elsevier, vol. 127(C), pages 94-101.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:94-101
    DOI: 10.1016/j.renene.2018.04.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118304580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.04.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdallah, Amir & Martinez, Diego & Figgis, Benjamin & El Daif, Ounsi, 2016. "Performance of Silicon Heterojunction Photovoltaic modules in Qatar climatic conditions," Renewable Energy, Elsevier, vol. 97(C), pages 860-865.
    2. Kerzmann, Tony & Schaefer, Laura, 2012. "System simulation of a linear concentrating photovoltaic system with an active cooling system," Renewable Energy, Elsevier, vol. 41(C), pages 254-261.
    3. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yecid Mu oz & Miguel De La Rosa & Leidy Carolina Acevedo & Wilmer Velandia, 2023. "Technical and Financial Assessment of Photovoltaic Solar Systems with Bifacial Technology Comparing Four Scenarios with Different Albedos with Respect to the Base Scenario with Monofacial Technology, ," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 389-393, July.
    2. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    2. Thomas Bröthaler & Marcus Rennhofer & Daniel Brandl & Thomas Mach & Andreas Heinz & Gusztáv Újvári & Helga C. Lichtenegger & Harald Rennhofer, 2021. "Performance Analysis of a Facade-Integrated Photovoltaic Powered Cooling System," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    3. Balaska, Amira & Tahri, Ali & Tahri, Fatima & Stambouli, Amine Boudghene, 2017. "Performance assessment of five different photovoltaic module technologies under outdoor conditions in Algeria," Renewable Energy, Elsevier, vol. 107(C), pages 53-60.
    4. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    5. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    6. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    7. Juhee Jang & Kyungsoo Lee, 2020. "Practical Performance Analysis of a Bifacial PV Module and System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    8. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    9. Wonkyun Jo & Namhyuk Ham & Juhyung Kim & Jaejun Kim, 2023. "The Cleaning Effect of Photovoltaic Modules According to Precipitation in the Operation Stage of a Large-Scale Solar Power Plant," Energies, MDPI, vol. 16(17), pages 1-18, August.
    10. Kuo, Chung-Feng Jeffrey & Yang, Pei-Chung & Umar, Mega Lazuardi & Lan, Wei-Lun, 2019. "A bifacial photovoltaic thermal system design with parameter optimization and performance beneficial validation," Applied Energy, Elsevier, vol. 247(C), pages 335-349.
    11. Patel, M. Tahir & Khan, M. Ryyan & Sun, Xingshu & Alam, Muhammad A., 2019. "A worldwide cost-based design and optimization of tilted bifacial solar farms," Applied Energy, Elsevier, vol. 247(C), pages 467-479.
    12. Khan, M. Ryyan & Sakr, Enas & Sun, Xingshu & Bermel, Peter & Alam, Muhammad A., 2019. "Ground sculpting to enhance energy yield of vertical bifacial solar farms," Applied Energy, Elsevier, vol. 241(C), pages 592-598.
    13. Karathanassis, I.K. & Papanicolaou, E. & Belessiotis, V. & Bergeles, G.C., 2019. "Dynamic simulation and exergetic optimization of a Concentrating Photovoltaic/ Thermal (CPVT) system," Renewable Energy, Elsevier, vol. 135(C), pages 1035-1047.
    14. Christopher Pike & Erin Whitney & Michelle Wilber & Joshua S. Stein, 2021. "Field Performance of South-Facing and East-West Facing Bifacial Modules in the Arctic," Energies, MDPI, vol. 14(4), pages 1-15, February.
    15. Mohammed Al-Housani & Yusuf Bicer & Muammer Koç, 2019. "Assessment of Various Dry Photovoltaic Cleaning Techniques and Frequencies on the Power Output of CdTe-Type Modules in Dusty Environments," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    16. Nasrin, R. & Hasanuzzaman, M. & Rahim, N.A., 2018. "Effect of high irradiation and cooling on power, energy and performance of a PVT system," Renewable Energy, Elsevier, vol. 116(PA), pages 552-569.
    17. Hua, Zhengcao & Ma, Chao & Lian, Jijian & Pang, Xiulan & Yang, Weichao, 2019. "Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand," Applied Energy, Elsevier, vol. 238(C), pages 721-733.
    18. Renno, C. & Perone, A., 2021. "Experimental modeling of the optical and energy performances of a point-focus CPV system applied to a residential user," Energy, Elsevier, vol. 215(PA).
    19. Ma, Chao & Wu, Runze & Liu, Zhao & Li, Xinyang, 2024. "Performance assessment of different photovoltaic module technologies in floating photovoltaic power plants under waters environment," Renewable Energy, Elsevier, vol. 222(C).
    20. Khan, M. Ryyan & Hanna, Amir & Sun, Xingshu & Alam, Muhammad A., 2017. "Vertical bifacial solar farms: Physics, design, and global optimization," Applied Energy, Elsevier, vol. 206(C), pages 240-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:94-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.