IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2954-d369011.html
   My bibliography  Save this article

Smart Energy Management for Series Hybrid Electric Vehicles Based on Driver Habits Recognition and Prediction

Author

Listed:
  • Loïc Joud

    (DRIVE EA1859, Université Bourgogne Franche-Comté, 58027 Nevers, France
    DANIELSON ENGINEERING, Technopôle du Circuit, 58470 Magny-Cours, France)

  • Rui Da Silva

    (DANIELSON ENGINEERING, Technopôle du Circuit, 58470 Magny-Cours, France)

  • Daniela Chrenko

    (Femto-ST, CNRS, Université Bourgogne Franche-Comté, 90010 Belfort, France)

  • Alan Kéromnès

    (DRIVE EA1859, Université Bourgogne Franche-Comté, 58027 Nevers, France)

  • Luis Le Moyne

    (DRIVE EA1859, Université Bourgogne Franche-Comté, 58027 Nevers, France)

Abstract

The objective of this work is to develop an optimal management strategy to improve the energetic efficiency of a hybrid electric vehicle. The strategy is built based on an extensive experimental study of mobility in order to allow trips recognition and prediction. For this experimental study, a dedicated autonomous acquisition system was developed. On working days, most trips are constrained and can be predicted with a high level of confidence. The database was built to assess the energy and power needed based on a static model for three types of cars. It was found that most trips could be covered by a 10 kWh battery. Regarding the optimization strategy, a novel real time capable energy management approach based on dynamic vehicle model was created using Energetic Macroscopic Representation. This real time capable energy management strategy is done by a combination of cycle prediction based on results obtained during the experimental study. The optimal control strategy for common cycles based on dynamic programming is available in the database. When a common cycle is detected, the pre-determined optimum strategy is applied to the similar upcoming cycle. If the real cycle differs from the reference cycle, the control strategy is adapted using quadratic programming. To assess the performance of the strategy, its resulting fuel consumption is compared to the global optimum calculated using dynamic programming and used as a reference; its optimality factor is above 98%.

Suggested Citation

  • Loïc Joud & Rui Da Silva & Daniela Chrenko & Alan Kéromnès & Luis Le Moyne, 2020. "Smart Energy Management for Series Hybrid Electric Vehicles Based on Driver Habits Recognition and Prediction," Energies, MDPI, vol. 13(11), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2954-:d:369011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Seongjun & Kim, Jonghoon, 2017. "Implementation methodology of powertrain for series-hybrid military vehicles applications equipped with hybrid energy storage," Energy, Elsevier, vol. 120(C), pages 229-240.
    2. Khan, Mobashwir & Kockelman, Kara M., 2012. "Predicting the market potential of plug-in electric vehicles using multiday GPS data," Energy Policy, Elsevier, vol. 46(C), pages 225-233.
    3. Li, Maobing & Xu, Hui & Li, Weimin & Liu, Yin & Li, Fade & Hu, Yue & Liu, Li, 2016. "The structure and control method of hybrid power source for electric vehicle," Energy, Elsevier, vol. 112(C), pages 1273-1285.
    4. Zhang, Pei & Yan, Fuwu & Du, Changqing, 2015. "A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 88-104.
    5. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    6. Liu, Teng & Wang, Bo & Yang, Chenglang, 2018. "Online Markov Chain-based energy management for a hybrid tracked vehicle with speedy Q-learning," Energy, Elsevier, vol. 160(C), pages 544-555.
    7. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei & Guo, Qiuyi, 2018. "Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction," Energy, Elsevier, vol. 155(C), pages 838-852.
    8. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei, 2017. "Particle swarm optimization of driving torque demand decision based on fuel economy for plug-in hybrid electric vehicle," Energy, Elsevier, vol. 123(C), pages 89-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anatole Desreveaux & Alain Bouscayrol & Elodie Castex & Rochdi Trigui & Eric Hittinger & Gabriel-Mihai Sirbu, 2020. "Annual Variation in Energy Consumption of an Electric Vehicle Used for Commuting," Energies, MDPI, vol. 13(18), pages 1-15, September.
    2. Tuyen Nguyen & Yannick Rauch & Reiner Kriesten & Daniela Chrenko, 2023. "Approach for a Global Route-Based Energy Management System for Electric Vehicles with a Hybrid Energy Storage System," Energies, MDPI, vol. 16(2), pages 1-20, January.
    3. Zhang, Zhen & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Yang, Jian & Jia, Qingxiao, 2023. "Double deep Q-network guided energy management strategy of a novel electric-hydraulic hybrid electric vehicle," Energy, Elsevier, vol. 269(C).
    4. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Wróblewski & Wojciech Drożdż & Wojciech Lewicki & Paweł Miązek, 2021. "Methodology for Assessing the Impact of Aperiodic Phenomena on the Energy Balance of Propulsion Engines in Vehicle Electromobility Systems for Given Areas," Energies, MDPI, vol. 14(8), pages 1-24, April.
    2. Chen, Syuan-Yi & Wu, Chien-Hsun & Hung, Yi-Hsuan & Chung, Cheng-Ta, 2018. "Optimal strategies of energy management integrated with transmission control for a hybrid electric vehicle using dynamic particle swarm optimization," Energy, Elsevier, vol. 160(C), pages 154-170.
    3. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    4. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    6. Alcázar-García, Désirée & Romeral Martínez, José Luis, 2022. "Model-based design validation and optimization of drive systems in electric, hybrid, plug-in hybrid and fuel cell vehicles," Energy, Elsevier, vol. 254(PA).
    7. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Ahmed M. Ali & Dirk Söffker, 2018. "Towards Optimal Power Management of Hybrid Electric Vehicles in Real-Time: A Review on Methods, Challenges, and State-Of-The-Art Solutions," Energies, MDPI, vol. 11(3), pages 1-24, February.
    9. Liu, Teng & Wang, Bo & Yang, Chenglang, 2018. "Online Markov Chain-based energy management for a hybrid tracked vehicle with speedy Q-learning," Energy, Elsevier, vol. 160(C), pages 544-555.
    10. Yezhen Wu & Yuliang Xu & Jianwei Zhou & Zhen Wang & Haopeng Wang, 2020. "Research on Starting Control Method of New-Energy Vehicle Based on State Machine," Energies, MDPI, vol. 13(23), pages 1-16, November.
    11. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    12. Ku, Donggyun & Choi, Minje & Yoo, Nakyoung & Shin, Seungheon & Lee, Seungjae, 2021. "A new algorithm for eco-friendly path guidance focused on electric vehicles," Energy, Elsevier, vol. 233(C).
    13. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    14. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    15. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    16. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    17. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Zhang, Jiye & Song, Pengyun, 2019. "Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway," Energy, Elsevier, vol. 183(C), pages 1123-1135.
    18. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Tamara L. Sheldon & J. R. DeShazo & Richard T. Carson, 2017. "Electric And Plug-In Hybrid Vehicle Demand: Lessons For An Emerging Market," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 695-713, April.
    20. Guo, Hongqiang & Sun, Qun & Wang, Chong & Wang, Qinpu & Lu, Silong, 2018. "A systematic design and optimization method of transmission system and power management for a plug-in hybrid electric vehicle," Energy, Elsevier, vol. 148(C), pages 1006-1017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2954-:d:369011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.