IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p159-d468531.html
   My bibliography  Save this article

Sustainable Additive Manufacturing: Mechanical Response of Polypropylene over Multiple Recycling Processes

Author

Listed:
  • Nectarios Vidakis

    (Mechanical Engineering Department, Hellenic Mediterranean University, 71410 Heraklion Crete, Greece)

  • Markos Petousis

    (Mechanical Engineering Department, Hellenic Mediterranean University, 71410 Heraklion Crete, Greece)

  • Lazaros Tzounis

    (Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece)

  • Athena Maniadi

    (Department of Materials Science and Technology, University of Crete, 70013 Heraklion Crete, Greece)

  • Emmanouil Velidakis

    (Mechanical Engineering Department, Hellenic Mediterranean University, 71410 Heraklion Crete, Greece)

  • Nicolaos Mountakis

    (Mechanical Engineering Department, Hellenic Mediterranean University, 71410 Heraklion Crete, Greece)

  • Dimitrios Papageorgiou

    (School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK)

  • Marco Liebscher

    (Institute of Construction Materials, Technische Universität Dresden, DE-01062 Dresden, Germany)

  • Viktor Mechtcherine

    (Institute of Construction Materials, Technische Universität Dresden, DE-01062 Dresden, Germany)

Abstract

The recycling of polymeric materials has received a steadily growing scientific and industrial interest due to the increase in demand and production of durable and lightweight plastic parts. Recycling of such materials is mostly based on thermomechanical processes that significantly affect the mechanical, as well as the overall physicochemical properties of polymers. The study at hand focuses on the recyclability of Fused Filament Fabrication (FFF) 3D printed Polypropylene (PP) for a certain number of recycling courses (six in total), and its effect on the mechanical properties of 3D printed parts. Namely, 3D printed specimens were fabricated from non-recycled and recycled PP material, and further experimentally tested regarding their mechanical properties in tension, flexion, impact, and microhardness. Comprehensive dynamic scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman spectroscopy, and morphological investigations by scanning electron microscopy (SEM) were performed for the different 3D printed PP samples. The overall results showed that there is an overall slight increase in the material’s mechanical properties, both in tension and in flexion mode, while the DSC characterization indicates an increase in the polymer crystallinity over the recycling course.

Suggested Citation

  • Nectarios Vidakis & Markos Petousis & Lazaros Tzounis & Athena Maniadi & Emmanouil Velidakis & Nicolaos Mountakis & Dimitrios Papageorgiou & Marco Liebscher & Viktor Mechtcherine, 2020. "Sustainable Additive Manufacturing: Mechanical Response of Polypropylene over Multiple Recycling Processes," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:159-:d:468531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nectarios Vidakis & Markos Petousis & Athena Maniadi & Emmanuel Koudoumas & Achilles Vairis & John Kechagias, 2020. "Sustainable Additive Manufacturing: Mechanical Response of Acrylonitrile-Butadiene-Styrene over Multiple Recycling Processes," Sustainability, MDPI, vol. 12(9), pages 1-15, April.
    2. Prateek Saxena & Panagiotis Stavropoulos & John Kechagias & Konstantinos Salonitis, 2020. "Sustainability Assessment for Manufacturing Operations," Energies, MDPI, vol. 13(11), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Bastas, 2021. "Sustainable Manufacturing Technologies: A Systematic Review of Latest Trends and Themes," Sustainability, MDPI, vol. 13(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Bastas, 2021. "Sustainable Manufacturing Technologies: A Systematic Review of Latest Trends and Themes," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    2. Agata Sudolska & Justyna Łapińska, 2020. "Exploring Determinants of Innovation Capability in Manufacturing Companies Operating in Poland," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    3. Simon Gorecki & Jalal Possik & Gregory Zacharewicz & Yves Ducq & Nicolas Perry, 2020. "A Multicomponent Distributed Framework for Smart Production System Modeling and Simulation," Sustainability, MDPI, vol. 12(17), pages 1-26, August.
    4. Vikas Swarnakar & Amit Raj Singh & Jiju Antony & Raja Jayaraman & Anil Kr Tiwari & Rajeev Rathi & Elizabeth Cudney, 2022. "Prioritizing Indicators for Sustainability Assessment in Manufacturing Process: An Integrated Approach," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    5. Konstantinos Salonitis, 2020. "Energy Efficiency of Manufacturing Processes and Systems—An Introduction," Energies, MDPI, vol. 13(11), pages 1-5, June.
    6. Korapin Jirapong & Karina Cagarman & Laura von Arnim, 2021. "Road to Sustainability: University–Start-Up Collaboration," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    7. Kamran Khan & Katarzyna Szopik Depczyńska & Izabela Dembińska & Giuseppe Ioppolo, 2022. "Most Relevant Sustainability Criteria for Urban Infrastructure Projects—AHP Analysis for the Gulf States," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    8. Angad Mann & Prateek Saxena & Mohamed Almanei & Okechukwu Okorie & Konstantinos Salonitis, 2022. "Environmental Impact Assessment of Different Strategies for the Remanufacturing of User Electronics," Energies, MDPI, vol. 15(7), pages 1-17, March.
    9. Antreas Kantaros & Nikolaos Laskaris & Dimitrios Piromalis & Theodore Ganetsos, 2021. "Manufacturing Zero-Waste COVID-19 Personal Protection Equipment: a Case Study of Utilizing 3D Printing While Employing Waste Material Recycling," Circular Economy and Sustainability, Springer, vol. 1(3), pages 851-869, November.
    10. Ming Zhang & Yang Lu & Youxi Hu & Nasser Amaitik & Yuchun Xu, 2022. "Dynamic Scheduling Method for Job-Shop Manufacturing Systems by Deep Reinforcement Learning with Proximal Policy Optimization," Sustainability, MDPI, vol. 14(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:159-:d:468531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.