IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2627-d361376.html
   My bibliography  Save this article

The Flow Characteristics of Supercritical Carbon Dioxide (SC-CO 2 ) Jet Fracturing in Limited Perforation Scenarios

Author

Listed:
  • Can Cai

    (School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China
    School of Power and Mechanical Engineering, Wuhan University, Wuhan 430000, China
    School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Song Xie

    (School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Qingren Liu

    (Jianghan Mechinery Research Institute Limited Company of CNPC, Wuhan 430000, China)

  • Yong Kang

    (School of Power and Mechanical Engineering, Wuhan University, Wuhan 430000, China)

  • Dong Lian

    (Shandong High Speed Railway Construction Equipment Co., Ltd., Weifang 261000, China)

  • Banrun Li

    (School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China)

Abstract

Supercritical carbon dioxide (SC-CO 2 ) jet fracturing is a promising alternative for shale gas fracturing instead of water. However, most studies pay more attention to the fracture generation and ignore the flow characteristic of SC-CO 2 jet fracturing in limited perforation scenarios. To accurately explore the flow field in a limited perforation tunnel, a numerical model of a SC-CO 2 jet in a limited perforation tunnel before fracture initiation is established based on the corresponding engineering background. The comparison between the numerical simulation and experiments has proved that the model is viable for this type of analysis. By using the numerical method, the flow field of the SC-CO 2 jet fracturing is analyzed, and influencing factors are discussed later. The verification and validation show that the numerical model is both reliable and accurate. With the dramatic fluctuating of turbulent mixing in a fully developed region, there is an apparent increase in the CO 2 density and total pressure during limited perforation. When the z increases from 10 times r 0 to 145 times r 0 , the velocity on the perforation wall surface would decrease below 0 m/s, resulting in backflow in the perforation tunnel. The structure of the nozzle, including the outlet length and outlet diameters, significantly affects the axial velocity and boosting pressure in the perforation tunnel. The highest total pressure exists when the nozzle length-to-radius ratio is 2. The maximum velocity of the jet core drops from 138.7 to 78 m/s, and the “hydraulic isolating ring” starts disappearing when the radius changes from 1 to 1.5 mm. It is necessary to increase the aperture ratio as much as possible to ensure pressurization but not over 1. Based on a similar theory high-speed photography results clearly show that the SC-CO 2 develops to fully jetting in only 0.07 s and a strong mixing exists in the annular region between the jet core and the surroundings, according with the numerical simulation. This study should be helpful for scholars to comprehensively understand the interaction between the SC-CO 2 jet and perforation, which is beneficial for studying SC-CO 2 fracturing.

Suggested Citation

  • Can Cai & Song Xie & Qingren Liu & Yong Kang & Dong Lian & Banrun Li, 2020. "The Flow Characteristics of Supercritical Carbon Dioxide (SC-CO 2 ) Jet Fracturing in Limited Perforation Scenarios," Energies, MDPI, vol. 13(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2627-:d:361376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    2. Filip Simeski & Matthias Ihme, 2023. "Supercritical fluids behave as complex networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Weiqiang Song & Hongjian Ni & Ruihe Wang & Mengyun Zhao, 2017. "Wellbore flow field of coiled tubing drilling with supercritical carbon dioxide," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 745-755, August.
    4. Zhao‐Zhong Yang & Liang‐Ping Yi & Xiao‐Gang Li & Yu Li & Min Jia, 2018. "Phase control of downhole fluid during supercritical carbon dioxide fracturing," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1079-1089, December.
    5. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    6. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    7. Han, Jinju & Lee, Minkyu & Lee, Wonsuk & Lee, Youngsoo & Sung, Wonmo, 2016. "Effect of gravity segregation on CO2 sequestration and oil production during CO2 flooding," Applied Energy, Elsevier, vol. 161(C), pages 85-91.
    8. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
    9. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    10. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    11. Pan, Jienan & Du, Xuetian & Wang, Xianglong & Hou, Quanlin & Wang, Zhenzhi & Yi, Jiale & Li, Meng, 2024. "Pore and permeability changes in coal induced by true triaxial supercritical carbon dioxide fracturing based on low-field nuclear magnetic resonance," Energy, Elsevier, vol. 286(C).
    12. Li, Bo & Yu, Hao & Xu, WenLong & Huang, HanWei & Huang, MengCheng & Meng, SiWei & Liu, He & Wu, HengAn, 2023. "A multi-physics coupled multi-scale transport model for CO2 sequestration and enhanced recovery in shale formation with fractal fracture networks," Energy, Elsevier, vol. 284(C).
    13. Yi Hu & Feng Liu & Yuqiang Hu & Yong Kang & Hao Chen & Jiawei Liu, 2019. "Propagation Characteristics of Supercritical Carbon Dioxide Induced Fractures under True Tri-Axial Stresses," Energies, MDPI, vol. 12(22), pages 1-13, November.
    14. Shehzad Ahmed & Khaled Abdalla Elraies & Muhammad Rehan Hashmet & Mohamad Sahban Alnarabiji, 2018. "Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions," Energies, MDPI, vol. 11(4), pages 1-16, March.
    15. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).
    16. Kuruneru, Sahan Trushad Wickramasooriya & Sauret, Emilie & Saha, Suvash Chandra & Gu, YuanTong, 2016. "Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers," Applied Energy, Elsevier, vol. 184(C), pages 531-547.
    17. Yi, Jie & Zhong, Dong-Liang & Yan, Jin & Lu, Yi-Yu, 2019. "Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture," Energy, Elsevier, vol. 171(C), pages 61-68.
    18. Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
    19. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    20. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Zhang, Xiao, 2022. "Experimental study on alteration kinetics for predicting rock mechanics damage caused by SC-CO2," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2627-:d:361376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.