IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1684-d228199.html
   My bibliography  Save this article

Column Leaching Tests to Valorize a Solid Waste from the Decommissioning of Coal-Fired Power Plants

Author

Listed:
  • Ernesto Rivas

    (Chemical Engineering Department, University of Granada, 18071 Granada, Spain)

  • María Ángeles Martín-Lara

    (Chemical Engineering Department, University of Granada, 18071 Granada, Spain)

  • Gabriel Blázquez

    (Chemical Engineering Department, University of Granada, 18071 Granada, Spain)

  • Antonio Pérez

    (Chemical Engineering Department, University of Granada, 18071 Granada, Spain)

  • Mónica Calero

    (Chemical Engineering Department, University of Granada, 18071 Granada, Spain)

Abstract

Solid waste from the decommissioning of coal-fired power plants collected from a power plant in Spain (Puertollano, Ciudad Real) was subjected to acid leaching tests in columns to evaluate the leachability of several valuable and toxic metals (Al, Ca, Fe, K, Mg, Na, Ti, V, Cr, Mn, Ni, and Zn). First, the contaminated waste, delivered by a national company, was chemically characterized. Second, column-leaching tests were conducted using two different acid solutions (nitric and sulfuric acid). The effect of the leaching agent concentration and time of leaching were examined. The results of column leaching tests showed that different concentrations of the acid solutions leached different proportions of Al, Fe, Mg, Mn, Ni, V, and Zn, which were leached by acid solutions from the solid waste sample. In general, use of sulfuric acid at pH 0.5 resulted in better leaching. Next, a comparison between three different configurations (one single stage without recirculation, one single stage with total recirculation of leachate and leaching in two consecutive stages: one with total recirculation of leachate and another one with acid set to a pH value of 0.5 and without recirculation) was performed. At the end of the experiments, all leaching methods resulted in comparable yields for Al (0.36–0.48%), Fe (5.99–6.40%), Mg (4.43–5.11%), Mn (2.71–2.83%), Ni (12.08–12.75%), V (0.08–0.34%), and Zn (23.62–25.28%). However, better results were obtained when two consecutive stages were carried out. Additionally, the effect of forced aeration on leachability was studied. Finally, this investigation showed that hydrometallurgical treatment of contaminated solid by means of acid leaching followed by basic leaching and a water wash between these stages was a potentially feasible method for reducing hazardous levels of the residue.

Suggested Citation

  • Ernesto Rivas & María Ángeles Martín-Lara & Gabriel Blázquez & Antonio Pérez & Mónica Calero, 2019. "Column Leaching Tests to Valorize a Solid Waste from the Decommissioning of Coal-Fired Power Plants," Energies, MDPI, vol. 12(9), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1684-:d:228199
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Volk, Rebekka & Hübner, Felix & Hünlich, Tobias & Schultmann, Frank, 2019. "The future of nuclear decommissioning – A worldwide market potential study," Energy Policy, Elsevier, vol. 124(C), pages 226-261.
    2. Laurynas Juodis & Evaldas Maceika & Artūras Plukis & Frédéric Dacquait & Jean-Baptiste Genin & Gilles Benier, 2019. "Assessment of radioactive contamination in primary circuit of WWER-440 type reactors by computer code OSCAR for the decommissioning case," Post-Print cea-03192034, HAL.
    3. García-Gusano, Diego & Iribarren, Diego & Dufour, Javier, 2018. "Is coal extension a sensible option for energy planning? A combined energy systems modelling and life cycle assessment approach," Energy Policy, Elsevier, vol. 114(C), pages 413-421.
    4. Kefford, Benjamin M. & Ballinger, Benjamin & Schmeda-Lopez, Diego R. & Greig, Chris & Smart, Simon, 2018. "The early retirement challenge for fossil fuel power plants in deep decarbonisation scenarios," Energy Policy, Elsevier, vol. 119(C), pages 294-306.
    5. Peter Markewitz & Martin Robinius & Detlef Stolten, 2018. "The Future of Fossil Fired Power Plants in Germany—A Lifetime Analysis," Energies, MDPI, vol. 11(6), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    3. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    4. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    5. Miroslav Variny, 2022. "Comment on Rogalev et al. Structural and Parametric Optimization of S-CO 2 Thermal Power Plants with a Pulverized Coal-Fired Boiler Operating in Russia. Energies 2021, 14 , 7136," Energies, MDPI, vol. 15(5), pages 1-5, February.
    6. Le Treut, Gaëlle & Lefèvre, Julien & Lallana, Francisco & Bravo, Gonzalo, 2021. "The multi-level economic impacts of deep decarbonization strategies for the energy system," Energy Policy, Elsevier, vol. 156(C).
    7. Martyna Tomala & Andrzej Rusin & Adam Wojaczek, 2020. "Risk-Based Planning of Diagnostic Testing of Turbines Operating with Increased Flexibility," Energies, MDPI, vol. 13(13), pages 1-16, July.
    8. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    9. Maamoun, Nada & Kennedy, Ryan & Jin, Xiaomeng & Urpelainen, Johannes, 2020. "Identifying coal-fired power plants for early retirement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    10. Kwangheon Park & Seunghyun Son & Jinhyuk Oh & Sunkuk Kim, 2022. "Sustainable Decommissioning Strategies for Nuclear Power Plants: A Systematic Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    11. Taewook Huh & Yong-Chan Choi & Jiyoung Hailiey Kim, 2018. "The Time-Series of Energy Mix and Transition: A Comparative Study of OECD Countries through the Fuzzy-Set Analysis," Energies, MDPI, vol. 11(11), pages 1-14, November.
    12. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," World Development, Elsevier, vol. 130(C).
    13. Ji Su Kang & Jae Hak Cheong, 2020. "Characteristics of Radioactive Effluent Releases from Pressurized Water Reactors after Permanent Shutdown," Energies, MDPI, vol. 13(10), pages 1-24, May.
    14. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    15. Pereira , Alfredo Marvão & Pereira, Rui Manuel, 2021. "On the Macroeconomic and Distributional Effects of the Regulated Closure of Coal-Operated Power Plants," Journal of Economic Development, The Economic Research Institute, Chung-Ang University, vol. 46(4), pages 1-30, December.
    16. Tlili, Olfa & Mansilla, Christine & Robinius, Martin & Syranidis, Konstantinos & Reuss, Markus & Linssen, Jochen & André, Jean & Perez, Yannick & Stolten, Detlef, 2019. "Role of electricity interconnections and impact of the geographical scale on the French potential of producing hydrogen via electricity surplus by 2035," Energy, Elsevier, vol. 172(C), pages 977-990.
    17. Kühne, Kjell & Bartsch, Nils & Tate, Ryan Driskell & Higson, Julia & Habet, André, 2022. "“Carbon Bombs” - Mapping key fossil fuel projects," Energy Policy, Elsevier, vol. 166(C).
    18. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
    19. Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier & Iribarren, Diego, 2020. "Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport," Applied Energy, Elsevier, vol. 259(C).
    20. Alina Maciejewska & Łukasz Kuzak & Janusz Sobieraj & Dominik Metelski, 2022. "The Impact of Opencast Lignite Mining on Rural Development: A Literature Review and Selected Case Studies Using Desk Research, Panel Data and GIS-Based Analysis," Energies, MDPI, vol. 15(15), pages 1-36, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1684-:d:228199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.